Totally Split-Decomposable Metrics of Combinatorial Dimension Two

2001 ◽  
Vol 5 (1) ◽  
pp. 99-112 ◽  
Author(s):  
A. Dress ◽  
K.T. Huber ◽  
K.T. Huber

2012 ◽  
Vol 11 (3) ◽  
pp. 467-499 ◽  
Author(s):  
Andreas Bernig

AbstractThe spaces of Sp(n)-, Sp(n) · U(1)- and Sp(n) · Sp(1)-invariant, translation-invariant, continuous convex valuations on the quaternionic vector space ℍn are studied. Combinatorial dimension formulae involving Young diagrams and Schur polynomials are proved.



1994 ◽  
Vol 120 (1) ◽  
pp. 73-73 ◽  
Author(s):  
Ron C. Blei ◽  
James H. Schmerl




2005 ◽  
Vol 26 (1-2) ◽  
pp. 146-159 ◽  
Author(s):  
Ron Blei ◽  
Fuchang Gao


2014 ◽  
Vol 13 (06) ◽  
pp. 1450024
Author(s):  
Juan Orendain

We study problems related to indecomposability of modules over certain local finite-dimensional trivial extension algebras. We do this by purely combinatorial methods. We introduce the concepts of graph of cyclic modules, of combinatorial dimension, and of fundamental combinatorial dimension of a module. We use these concepts to establish, under favorable conditions, criteria for the indecomposability of a module. We present categorified versions of these constructions and we use this categorical framework to establish criteria for the indecomposability of modules of infinite rank.



2003 ◽  
Vol 152 (1) ◽  
pp. 37-55 ◽  
Author(s):  
S. Mendelson ◽  
R. Vershynin


2002 ◽  
Vol 64 (1) ◽  
pp. 2-21 ◽  
Author(s):  
José L. Balcázar ◽  
Jorge Castro ◽  
David Guijarro


1984 ◽  
Vol 47 (1) ◽  
pp. 65-74 ◽  
Author(s):  
R. C. Blei ◽  
T. W. Körner


Sign in / Sign up

Export Citation Format

Share Document