Hausdorff dimension 2 for Julia sets of quadratic polynomials

2001 ◽  
Vol 237 (3) ◽  
pp. 571-583 ◽  
Author(s):  
Stefan-M. Heinemann ◽  
Bernd O. Stratmann
2017 ◽  
Vol 39 (9) ◽  
pp. 2481-2506 ◽  
Author(s):  
A. CONNES ◽  
E. MCDONALD ◽  
F. SUKOCHEV ◽  
D. ZANIN

If $c$ is in the main cardioid of the Mandelbrot set, then the Julia set $J$ of the map $\unicode[STIX]{x1D719}_{c}:z\mapsto z^{2}+c$ is a Jordan curve of Hausdorff dimension $p\in [1,2)$. We provide a full proof of a formula for the Hausdorff measure on $J$ in terms of singular traces announced by the first named author in 1996.


Fractals ◽  
2018 ◽  
Vol 26 (03) ◽  
pp. 1850020
Author(s):  
LUIS MANUEL MARTÍNEZ ◽  
GAMALIEL BLÉ

The Hausdorff dimension of Julia sets of expanding maps can be computed by the eigenvalue algorithm. In this work, an implementation of this algorithm for quadratic polynomial, that allows the calculation of the Hausdorff dimension of Julia sets for complex parameters, is done. In particular, the parameters in a neighborhood of the parabolic parameter [Formula: see text] are analyzed and a small oscillation in Hausdorff dimension is shown.


2019 ◽  
pp. 153-192
Author(s):  
Xin-Hou Hua ◽  
Chung-Chun Yang

Author(s):  
James Waterman

Abstract We show that the Hausdorff dimension of the set of points of bounded orbit in the Julia set of a meromorphic map with a simply connected direct tract and a certain restriction on the singular values is strictly greater than one. This result is obtained by proving new results related to Wiman–Valiron theory.


2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2013 ◽  
Vol 35 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
ANDREW D. BARWELL ◽  
JONATHAN MEDDAUGH ◽  
BRIAN E. RAINES

AbstractIn this paper we consider quadratic polynomials on the complex plane${f}_{c} (z)= {z}^{2} + c$and their associated Julia sets,${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an$n$-tupling. In this case${J}_{c} $contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that${f}_{c} : {J}_{c} \rightarrow {J}_{c} $has shadowing, and we classify all$\omega $-limit sets for these maps by showing that a closed set$R\subseteq {J}_{c} $is internally chain transitive if, and only if, there is some$z\in {J}_{c} $with$\omega (z)= R$.


Sign in / Sign up

Export Citation Format

Share Document