scholarly journals On the Hausdorff dimension of Julia sets of meromorphic functions. I

1994 ◽  
Vol 122 (3) ◽  
pp. 305-331 ◽  
Author(s):  
Janina Kotus
2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2001 ◽  
Vol 33 (6) ◽  
pp. 689-694 ◽  
Author(s):  
GWYNETH M. STALLARD

It is known that, if f is a hyperbolic rational function, then the Hausdorff, packing and box dimensions of the Julia set, J(f), are equal. In this paper it is shown that, for a hyperbolic transcendental meromorphic function f, the packing and upper box dimensions of J(f) are equal, but can be strictly greater than the Hausdorff dimension of J(f).


2019 ◽  
pp. 153-192
Author(s):  
Xin-Hou Hua ◽  
Chung-Chun Yang

2015 ◽  
Vol 59 (3) ◽  
pp. 671-690
Author(s):  
Piotr Gałązka ◽  
Janina Kotus

AbstractLetbe a non-constant elliptic function. We prove that the Hausdorff dimension of the escaping set offequals 2q/(q+1), whereqis the maximal multiplicity of poles off. We also consider theescaping parametersin the familyfβ=βf, i.e. the parametersβfor which the orbit of one critical value offβescapes to infinity. Under additional assumptions onfwe prove that the Hausdorff dimension of the set of escaping parametersεin the familyfβis greater than or equal to the Hausdorff dimension of the escaping set in the dynamical space. This demonstrates an analogy between the dynamical plane and the parameter plane in the class of transcendental meromorphic functions.


Author(s):  
James Waterman

Abstract We show that the Hausdorff dimension of the set of points of bounded orbit in the Julia set of a meromorphic map with a simply connected direct tract and a certain restriction on the singular values is strictly greater than one. This result is obtained by proving new results related to Wiman–Valiron theory.


Sign in / Sign up

Export Citation Format

Share Document