Irreducible Components of Hurwitz Spaces of Coverings with Two Special Fibers

2013 ◽  
Vol 10 (3) ◽  
pp. 1151-1170
Author(s):  
Francesca Vetro
2021 ◽  
Vol 33 (1) ◽  
pp. 47-56
Author(s):  
S. Buyalo

Orthogonal representations η n : S n ↷ R N \eta _n\colon S_n\curvearrowright \mathbb {R}^N of the symmetric groups S n S_n , n ≥ 4 n\ge 4 , with N = n ! / 8 N=n!/8 , emerging from symmetries of double ratios are treated. For n = 5 n=5 , the representation η 5 \eta _5 is decomposed into irreducible components and it is shown that a certain component yields a solution of the equations that describe the Möbius structures in the class of sub-Möbius structures. In this sense, a condition determining the Möbius structures is implicit already in symmetries of double ratios.


2017 ◽  
Vol 3 (3) ◽  
pp. 423-443
Author(s):  
Cordian Riener ◽  
Nicolai Vorobjov

2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


2012 ◽  
Vol 23 (04) ◽  
pp. 1250031 ◽  
Author(s):  
JOSÉ F. FERNANDO ◽  
J. M. GAMBOA

In this work we define a semialgebraic set S ⊂ ℝn to be irreducible if the noetherian ring [Formula: see text] of Nash functions on S is an integral domain. Keeping this notion we develop a satisfactory theory of irreducible components of semialgebraic sets, and we use it fruitfully to approach four classical problems in Real Geometry for the ring [Formula: see text]: Substitution Theorem, Positivstellensätze, 17th Hilbert Problem and real Nullstellensatz, whose solution was known just in case S = M is an affine Nash manifold. In fact, we give full characterizations of the families of semialgebraic sets for which these classical results are true.


Sign in / Sign up

Export Citation Format

Share Document