On the spectral mapping theorem for perturbed strongly continuous semigroups

2000 ◽  
Vol 74 (5) ◽  
pp. 365-378 ◽  
Author(s):  
S. Brendle ◽  
R. Nagel ◽  
J. Poland
1991 ◽  
Vol 291 (1) ◽  
pp. 453-462 ◽  
Author(s):  
F. Andreu ◽  
J. Mart�nez ◽  
J. M. Maz�n

2015 ◽  
Vol 268 (9) ◽  
pp. 2479-2524 ◽  
Author(s):  
Roland Donninger ◽  
Birgit Schörkhuber

Author(s):  
M. S. Livšic ◽  
N. Kravitsky ◽  
A. S. Markus ◽  
V. Vinnikov

2003 ◽  
Vol 2003 (16) ◽  
pp. 933-951 ◽  
Author(s):  
Genni Fragnelli

We prove a spectral mapping theorem for semigroups solving partial differential equations with nonautonomous past. This theorem is then used to give spectral conditions for the stability of the solutions of the equations.


2015 ◽  
Vol 423 (1) ◽  
pp. 1-9 ◽  
Author(s):  
M. Amouch ◽  
M. Benharrat ◽  
B. Messirdi

1988 ◽  
Vol 30 (1) ◽  
pp. 11-15 ◽  
Author(s):  
K. Rudol

This note provides yet another example of the difficulties that arise when one wants to extend the spectral theory of subnormal operators to subnormal tuples. Several basic properties of a subnormal operator Y remain true for tuples; e.g. the existence and uniqueness of its minimal normal extension N, the spectral inclusion σ(N)⊂ σ(Y)-proved for n-tuples in [4] and generalized to infinite tuples in [5]. However, neither the invariant subspace theorem nor the spectral mapping theorem in the “strong form” as in [3] is known so far for subnormal tuples.


2004 ◽  
Vol 111 (7) ◽  
pp. 572 ◽  
Author(s):  
Torsten Ekedahl ◽  
Dan Laksov

Sign in / Sign up

Export Citation Format

Share Document