Commutative Sequences of Integrable Functions and Best Approximation With Respect to the Weighted Vector Measure Distance

2005 ◽  
Vol 54 (4) ◽  
pp. 495-510 ◽  
Author(s):  
L. M. García. Raffi ◽  
E. A. Sánchez. Pérez ◽  
J. V. Sánchez. Pérez
2007 ◽  
Vol 330 (2) ◽  
pp. 1249-1263 ◽  
Author(s):  
A. Fernández ◽  
F. Mayoral ◽  
F. Naranjo ◽  
C. Sáez ◽  
E.A. Sánchez-Pérez

2007 ◽  
Vol 257 (2) ◽  
pp. 381-402 ◽  
Author(s):  
J. M. Calabuig ◽  
F. Galaz-Fontes ◽  
E. Jiménez-Fernández ◽  
E. A. Sánchez Pérez

2008 ◽  
Vol 343 (1) ◽  
pp. 514-524 ◽  
Author(s):  
R. del Campo ◽  
A. Fernández ◽  
I. Ferrando ◽  
F. Mayoral ◽  
F. Naranjo

2014 ◽  
Vol 500 ◽  
pp. 1-68 ◽  
Author(s):  
S. Okada ◽  
W. J. Ricker ◽  
E. A. Sánchez Pérez

2010 ◽  
Vol 61 (3) ◽  
pp. 241-252 ◽  
Author(s):  
A. Fernández ◽  
F. Mayoral ◽  
F. Naranjo ◽  
E. A. Sánchez-Pérez

2009 ◽  
Vol 87 (2) ◽  
pp. 211-225 ◽  
Author(s):  
IRENE FERRANDO ◽  
ENRIQUE A. SÁNCHEZ PÉREZ

AbstractThe duality properties of the integration map associated with a vector measure m are used to obtain a representation of the (pre)dual space of the space Lp(m) of p-integrable functions (where 1<p<∞) with respect to the measure m. For this, we provide suitable topologies for the tensor product of the space of q-integrable functions with respect to m (where p and q are conjugate real numbers) and the dual of the Banach space where m takes its values. Our main result asserts that under the assumption of compactness of the unit ball with respect to a particular topology, the space Lp(m) can be written as the dual of a suitable normed space.


2003 ◽  
Vol 80 (2) ◽  
pp. 177-190 ◽  
Author(s):  
E. A. S�nchez P�rez

Sign in / Sign up

Export Citation Format

Share Document