vector measure
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)



Author(s):  
Krzysztof J. Ciosmak

AbstractWe develop and study a theory of optimal transport for vector measures. We resolve in the negative a conjecture of Klartag, that given a vector measure on Euclidean space with total mass zero, the mass of any transport set is again zero. We provide a counterexample to the conjecture. We generalise the Kantorovich–Rubinstein duality to the vector measures setting. Employing the generalisation, we answer the conjecture in the affirmative provided there exists an optimal transport with absolutely continuous marginals of its total variation.



2021 ◽  
Vol 64 (1) ◽  
pp. 87-98
Author(s):  
Manoj Kumar ◽  
N. Shravan Kumar

The aim of this paper is to present some results about the space $L^{\varPhi }(\nu ),$ where $\nu$ is a vector measure on a compact (not necessarily abelian) group and $\varPhi$ is a Young function. We show that under natural conditions, the space $L^{\varPhi }(\nu )$ becomes an $L^{1}(G)$-module with respect to the usual convolution of functions. We also define one more convolution structure on $L^{\varPhi }(\nu ).$



2021 ◽  
Vol 20 ◽  
pp. 8-18
Author(s):  
Levi Otanga Olwamba ◽  
Maurice Oduor

This article is devoted to the study of pointwise product vector measure duality. The properties of Hilbert function space of integrable functions and pointwise sections of measurable sets are considered through the application of integral representation of product vector measures, inner product functions and products of measurable sets.





2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Piotr Mikusiński ◽  
John Paul Ward

AbstractIf \left( {{\mu _n}} \right)_{n = 1}^\infty are positive measures on a measurable space (X, Σ) and \left( {{v_n}} \right)_{n = 1}^\infty are elements of a Banach space 𝔼 such that \sum\nolimits_{n = 1}^\infty {\left\| {{v_n}} \right\|{\mu _n}\left( X \right)} < \infty, then \omega \left( S \right) = \sum\nolimits_{n = 1}^\infty {{v_n}{\mu _n}\left( S \right)} defines a vector measure of bounded variation on (X, Σ). We show 𝔼 has the Radon-Nikodym property if and only if every 𝔼-valued measure of bounded variation on (X, Σ) is of this form. This characterization of the Radon-Nikodym property leads to a new proof of the Lewis-Stegall theorem.We also use this result to show that under natural conditions an operator defined on positive measures has a unique extension to an operator defined on 𝔼-valued measures for any Banach space 𝔼 that has the Radon-Nikodym property.



Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1460
Author(s):  
Jorge Arvesú ◽  
Andys M. Ramírez-Aberasturis

We consider two families of type II multiple orthogonal polynomials. Each family has orthogonality conditions with respect to a discrete vector measure. The r components of each vector measure are q-analogues of Meixner measures of the first and second kind, respectively. These polynomials have lowering and raising operators, which lead to the Rodrigues formula, difference equation of order r+1, and explicit expressions for the coefficients of recurrence relation of order r+1. Some limit relations are obtained.





2020 ◽  
Vol 148 (9) ◽  
pp. 3989-3996
Author(s):  
José Rodríguez
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document