Strong factorization of operators on spaces of vector measure integrable functions and unconditional convergence of series

2007 ◽  
Vol 257 (2) ◽  
pp. 381-402 ◽  
Author(s):  
J. M. Calabuig ◽  
F. Galaz-Fontes ◽  
E. Jiménez-Fernández ◽  
E. A. Sánchez Pérez
2007 ◽  
Vol 330 (2) ◽  
pp. 1249-1263 ◽  
Author(s):  
A. Fernández ◽  
F. Mayoral ◽  
F. Naranjo ◽  
C. Sáez ◽  
E.A. Sánchez-Pérez

2011 ◽  
Vol 53 (3) ◽  
pp. 583-598 ◽  
Author(s):  
IOANA GHENCIU ◽  
PAUL LEWIS

AbstractIn this paper we study non-complemented spaces of operators and the embeddability of ℓ∞ in the spaces of operators L(X, Y), K(X, Y) and Kw*(X*, Y). Results of Bator and Lewis [2, 3] (Bull. Pol. Acad. Sci. Math.50(4) (2002), 413–416; Bull. Pol. Acad. Sci. Math.549(1) (2006), 63–73), Emmanuele [8–10] (J. Funct. Anal.99 (1991), 125–130; Math. Proc. Camb. Phil. Soc.111 (1992), 331–335; Atti. Sem. Mat. Fis. Univ. Modena42(1) (1994), 123–133), Feder [11] (Canad. Math. Bull.25 (1982), 78–81) and Kalton [16] (Math. Ann.208 (1974), 267–278), are generalised. A vector measure result is used to study the complementation of the spaces W(X, Y) and K(X, Y) in the space L(X, Y), as well as the complementation of K(X, Y) in W(X, Y). A fundamental result of Drewnowski [7] (Math. Proc. Camb. Phil. Soc. 108 (1990), 523–526) is used to establish a result for operator-valued measures, from which we obtain as corollaries the Vitali–Hahn–Saks–Nikodym theorem, the Nikodym Boundedness theorem and a Banach space version of the Phillips Lemma.


2008 ◽  
Vol 343 (1) ◽  
pp. 514-524 ◽  
Author(s):  
R. del Campo ◽  
A. Fernández ◽  
I. Ferrando ◽  
F. Mayoral ◽  
F. Naranjo

2005 ◽  
Vol 54 (4) ◽  
pp. 495-510 ◽  
Author(s):  
L. M. García. Raffi ◽  
E. A. Sánchez. Pérez ◽  
J. V. Sánchez. Pérez

2014 ◽  
Vol 500 ◽  
pp. 1-68 ◽  
Author(s):  
S. Okada ◽  
W. J. Ricker ◽  
E. A. Sánchez Pérez

Sign in / Sign up

Export Citation Format

Share Document