Classification of the Blaschke Isoparametric Hypersurfaces with Three Distinct Blaschke Eigenvalues

2010 ◽  
Vol 58 (1-2) ◽  
pp. 145-172 ◽  
Author(s):  
Xingxiao Li ◽  
Yejuan Peng
2006 ◽  
Vol 151 (3) ◽  
pp. 201-222 ◽  
Author(s):  
Zejun Hu ◽  
Haizhong Li ◽  
Changping Wang

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Yan Zhao ◽  
Ximin Liu

We define the generalized golden- and product-shaped hypersurfaces in real space forms. A hypersurfaceMin real space formsRn+1,Sn+1, andHn+1is isoparametric if it has constant principal curvatures. Based on the classification of isoparametric hypersurfaces, we obtain the whole families of the generalized golden- and product-shaped hypersurfaces in real space forms.


2015 ◽  
Vol 65 (3) ◽  
Author(s):  
Fengyun Zhang ◽  
Huafei Sun

AbstractIn this paper, we study regular immersed hypersurfaces in Lorentzian space forms with a conformal metric, a conformal second fundamental form, the conformal Blaschke tensor and a conformal form, which are invariants under the conformal transformation group. We classify all the immersed hypersurfaces in Lorentzian space forms with two distinct constant Blaschke eigenvalues and vanishing conformal form.


1993 ◽  
Vol 132 ◽  
pp. 1-36 ◽  
Author(s):  
Oldřich Kowalski

This paper has been motivated by various problems and results in differential geometry. The main motivation is the study of curvature homogeneous Riemannian spaces initiated in 1960 by I.M. Singer (see Section 9—Appendix for the precise definitions and references). Up to recently, only sporadic classes of examples have been known of curvature homogeneous spaces which are not locally homogeneous. For instance, isoparametric hypersurfaces in space forms give nice examples of nontrivial curvature homogeneous spaces (see [FKM]). To study the topography of curvature homogeneous spaces more systematically, it is natural to start with the dimension n = 3. The following results and problems have been particularly inspiring.


2005 ◽  
Vol 179 ◽  
pp. 147-162 ◽  
Author(s):  
Zejun Hu ◽  
Haizhong Li

AbstractLet Mn be an immersed umbilic-free hypersurface in the (n + 1)-dimensional unit sphere n+1, then Mn is associated with a so-called Möbius metric g, a Möbius second fundamental form B and a Möbius form Φ which are invariants of Mn under the Möbius transformation group of n+1. A classical theorem of Möbius geometry states that Mn (n ≥ 3) is in fact characterized by g and B up to Möbius equivalence. A Möbius isoparametric hypersurface is defined by satisfying two conditions: (1) Φ ≡ 0; (2) All the eigenvalues of B with respect to g are constants. Note that Euclidean isoparametric hyper-surfaces are automatically Möbius isoparametric, whereas the latter are Dupin hypersurfaces.In this paper, we prove that a Möbius isoparametric hypersurface in 4 is either of parallel Möbius second fundamental form or Möbius equivalent to a tube of constant radius over a standard Veronese embedding of ℝP2 into 4. The classification of hypersurfaces in n+1 (n ≥ 2) with parallel Möbius second fundamental form has been accomplished in our previous paper [6]. The present result is a counterpart of Pinkall’s classification for Dupin hypersurfaces in 4 up to Lie equivalence.


2013 ◽  
Vol 10 (04) ◽  
pp. 1320006 ◽  
Author(s):  
MIRCEA CRASMAREANU ◽  
CRISTINA-ELENA HREŢCANU ◽  
MARIAN-IOAN MUNTEANU

We define two classes of hypersurfaces in real space forms, golden- and product-shaped, respectively, by imposing the shape operator to be of golden or product type. We obtain the whole families of above hypersurfaces, based on the classification of isoparametric hypersurfaces, as follows: in the golden case all are hyperspheres, a hyperbolic space and a generalized Clifford torus, while for the product case we obtain the unit hypersphere, the hyperplane, a hypersphere and its associated Clifford torus, respectively, according to the type of the ambient space form namely parabolic, hyperbolic or elliptic, respectively.


Sign in / Sign up

Export Citation Format

Share Document