scholarly journals The Vortex-like Behavior of the Riemann Zeta Function to the Right of the Critical Strip

2021 ◽  
Vol 77 (1) ◽  
Author(s):  
J. M. Sepulcre ◽  
T. Vidal

AbstractBased on an equivalence relation that was established recently on exponential sums, in this paper we study the class of functions that are equivalent to the Riemann zeta function in the half-plane $$\{s\in {\mathbb {C}}:\mathrm{Re}\, s>1\}$$ { s ∈ C : Re s > 1 } . In connection with this class of functions, we first determine the value of the maximum abscissa from which the images of any function in it cannot take a prefixed argument. The main result shows that each of these functions experiments a vortex-like behavior in the sense that the main argument of its images varies indefinitely near the vertical line $$\mathrm{Re}\, s=1$$ Re s = 1 . In particular, regarding the Riemann zeta function $$\zeta (s)$$ ζ ( s ) , for every $$\sigma _0>1$$ σ 0 > 1 we can assure the existence of a relatively dense set of real numbers $$\{t_m\}_{m\ge 1}$$ { t m } m ≥ 1 such that the parametrized curve traced by the points $$(\mathrm{Re} (\zeta (\sigma +it_m)),\mathrm{Im}(\zeta (\sigma +it_m)))$$ ( Re ( ζ ( σ + i t m ) ) , Im ( ζ ( σ + i t m ) ) ) , with $$\sigma \in (1,\sigma _0)$$ σ ∈ ( 1 , σ 0 ) , makes a prefixed finite number of turns around the origin.

2012 ◽  
Vol 87 (3) ◽  
pp. 452-461 ◽  
Author(s):  
TAKASHI NAKAMURA ◽  
ŁUKASZ PAŃKOWSKI

AbstractIn the paper we deal with self-approximation of the Riemann zeta function in the half plane $\operatorname {Re} s\gt 1$ and in the right half of the critical strip. We also prove some results concerning joint universality and joint value approximation of functions $\zeta (s+\lambda +id\tau )$ and $\zeta (s+i\tau )$.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1073
Author(s):  
Antanas Laurinčikas ◽  
Darius Šiaučiūnas

In the paper, a Dirichlet series ζuN(s) whose shifts ζuN(s+ikh), k=0,1,⋯, h>0, approximate analytic non-vanishing functions defined on the right-hand side of the critical strip is considered. This series is closely connected to the Riemann zeta-function. The sequence uN→∞ and uN≪N2 as N→∞.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


Author(s):  
M. Aslam Chaudhry ◽  
Asghar Qadir

Fermi-Dirac and Bose-Einstein functions arise as quantum statistical distributions. The Riemann zeta function and its extension, the polylogarithm function, arise in the theory of numbers. Though it might not have been expected, these two sets of functions belong to a wider class of functions whose members have operator representations. In particular, we show that the Fermi-Dirac and Bose-Einstein integral functions are expressible as operator representations in terms of themselves. Simpler derivations of previously known results of these functions are obtained by their operator representations.


Sign in / Sign up

Export Citation Format

Share Document