scholarly journals On the integer part of the reciprocal of the Riemann zeta function tail at certain rational numbers in the critical strip

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .

2013 ◽  
Vol 18 (3) ◽  
pp. 314-326
Author(s):  
Antanas Laurinčikas ◽  
Renata Macaitienė˙

In the paper, we prove a joint universality theorem for the Riemann zeta-function and a collection of Lerch zeta-functions with parameters algebraically independent over the field of rational numbers.


2012 ◽  
Vol 87 (3) ◽  
pp. 452-461 ◽  
Author(s):  
TAKASHI NAKAMURA ◽  
ŁUKASZ PAŃKOWSKI

AbstractIn the paper we deal with self-approximation of the Riemann zeta function in the half plane $\operatorname {Re} s\gt 1$ and in the right half of the critical strip. We also prove some results concerning joint universality and joint value approximation of functions $\zeta (s+\lambda +id\tau )$ and $\zeta (s+i\tau )$.


2018 ◽  
Vol 70 (3) ◽  
pp. 831-848 ◽  
Author(s):  
Christoph Aistleitner ◽  
Kamalakshya Mahatab ◽  
Marc Munsch ◽  
Alexandre Peyrot

Abstract In recent years, a variant of the resonance method was developed which allowed to obtain improved Ω-results for the Riemann zeta function along vertical lines in the critical strip. In the present paper, we show how this method can be adapted to prove the existence of large values of |L(σ,χ)| in the range σ∈(1/2,1], and to estimate the proportion of characters for which |L(σ,χ)| is of such a large order. More precisely, for every fixed σ∈(1/2,1), we show that for all sufficiently large q, there is a non-principal character χ(modq) such that log|L(σ,χ)|≥C(σ)(logq)1−σ(loglogq)−σ. In the case σ=1, we show that there is a non-principal character χ(modq) for which |L(1,χ)|≥eγ(log2q+log3q−C). In both cases, our results essentially match the prediction for the actual order of such extreme values, based on probabilistic models.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1073
Author(s):  
Antanas Laurinčikas ◽  
Darius Šiaučiūnas

In the paper, a Dirichlet series ζuN(s) whose shifts ζuN(s+ikh), k=0,1,⋯, h>0, approximate analytic non-vanishing functions defined on the right-hand side of the critical strip is considered. This series is closely connected to the Riemann zeta-function. The sequence uN→∞ and uN≪N2 as N→∞.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
J. M. Sepulcre ◽  
T. Vidal

AbstractBased on an equivalence relation that was established recently on exponential sums, in this paper we study the class of functions that are equivalent to the Riemann zeta function in the half-plane $$\{s\in {\mathbb {C}}:\mathrm{Re}\, s>1\}$$ { s ∈ C : Re s > 1 } . In connection with this class of functions, we first determine the value of the maximum abscissa from which the images of any function in it cannot take a prefixed argument. The main result shows that each of these functions experiments a vortex-like behavior in the sense that the main argument of its images varies indefinitely near the vertical line $$\mathrm{Re}\, s=1$$ Re s = 1 . In particular, regarding the Riemann zeta function $$\zeta (s)$$ ζ ( s ) , for every $$\sigma _0>1$$ σ 0 > 1 we can assure the existence of a relatively dense set of real numbers $$\{t_m\}_{m\ge 1}$$ { t m } m ≥ 1 such that the parametrized curve traced by the points $$(\mathrm{Re} (\zeta (\sigma +it_m)),\mathrm{Im}(\zeta (\sigma +it_m)))$$ ( Re ( ζ ( σ + i t m ) ) , Im ( ζ ( σ + i t m ) ) ) , with $$\sigma \in (1,\sigma _0)$$ σ ∈ ( 1 , σ 0 ) , makes a prefixed finite number of turns around the origin.


Sign in / Sign up

Export Citation Format

Share Document