Strong solutions to the three-dimensional barotropic compressible magneto-micropolar fluid equations with vacuum

Author(s):  
Qingmei Xu ◽  
Xin Zhong
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Yan Jia ◽  
Jing Zhang ◽  
Bo-Qing Dong

This paper is devoted to the regularity criterion of the three-dimensional micropolar fluid equations. Some new regularity criteria in terms of the partial derivative of the pressure in the Lebesgue spaces and the Besov spaces are obtained which improve the previous results on the micropolar fluid equations.


Author(s):  
Dongjuan Niu ◽  
Haifeng Shang

This paper deals with the global existence and decay estimates of solutions to the three-dimensional magneto-micropolar fluid equations with only velocity dissipation and magnetic diffusion in the whole space with various Sobolev and Besov spaces. Specifically, we first investigate the global existence and optimal decay estimates of weak solutions. Then we prove the global existence of solutions with small initial data in $H^s$, $B_{2, \infty}^s$ and critical Besov spaces, respectively. Furthermore, the optimal decay rates of these global solutions are correspondingly established in $\dot{H}^m$ and $\dot{B}_{2, \infty}^m$ spaces with $0\leq m\leq s$ and in $\dot{B}_{2, 1}^{m}$ with $0\leq m\leq \frac 12$, when the initial data belongs to $\dot{B}_{2, \infty}^{-l}$ ($0< l\leq\frac32$). The main difficulties lie in the presence of linear terms and the lack of micro-rotation velocity dissipation. To overcome them, we make full use of the special structure of the system and employ various techniques involved with the energy methods, the improved Fourier splitting, Fourier analysis and the regularity interpolation methods.


Sign in / Sign up

Export Citation Format

Share Document