Kazhdan's Property T and the Geometry of the Collection of Invariant Measures

1997 ◽  
Vol 7 (5) ◽  
pp. 917-935 ◽  
Author(s):  
E. Glasner ◽  
B. Weiss
2003 ◽  
Vol 10 (2) ◽  
pp. 247-255
Author(s):  
A. Kharazishvili

Abstract A method of extending σ-finite quasi-invariant measures given on an uncountable group, by using a certain family of its subgroups, is investigated.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Sergey Kryzhevich ◽  
Viktor Avrutin ◽  
Nikita Begun ◽  
Dmitrii Rachinskii ◽  
Khosro Tajbakhsh

We studied topological and metric properties of the so-called interval translation maps (ITMs). For these maps, we introduced the maximal invariant measure and demonstrated that an ITM, endowed with such a measure, is metrically conjugated to an interval exchange map (IEM). This allowed us to extend some properties of IEMs (e.g., an estimate of the number of ergodic measures and the minimality of the symbolic model) to ITMs. Further, we proved a version of the closing lemma and studied how the invariant measures depend on the parameters of the system. These results were illustrated by a simple example or a risk management model where interval translation maps appear naturally.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


1995 ◽  
Vol 24 (3) ◽  
pp. 323-336 ◽  
Author(s):  
Phil Diamond ◽  
Peter Kloeden ◽  
Alexei Pokrovskii
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document