A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat

2011 ◽  
Vol 122 (6) ◽  
pp. 1189-1198 ◽  
Author(s):  
D. V. Jayatilake ◽  
G. H. Bai ◽  
Y. H. Dong
2005 ◽  
Vol 18 (12) ◽  
pp. 1318-1324 ◽  
Author(s):  
Marc Lemmens ◽  
Uwe Scholz ◽  
Franz Berthiller ◽  
Chiara Dall'Asta ◽  
Andrea Koutnik ◽  
...  

We investigated the hypothesis that resistance to deoxynivalenol (DON) is a major resistance factor in the Fusarium head blight (FHB) resistance complex of wheat. Ninety-six double haploid lines from a cross between ‘CM-82036’ and ‘Remus’ were examined. The lines were tested for DON resistance after application of the toxin in the ear, and for resistances to initial infection and spread of FHB after artificial inoculation with Fusarium spp. Toxin application to flowering ears induced typical FHB symptoms. Quantitative trait locus (QTL) analyses detected one locus with a major effect on DON resistance (logarithm of odds = 53.1, R2 = 92.6). The DON resistance phenotype was closely associated with an important FHB resistance QTL, Qfhs.ndsu-3BS, which previously was identified as governing resistance to spread of symptoms in the ear. Resistance to the toxin was correlated with resistance to spread of FHB (r = 0.74, P < 0.001). In resistant wheat lines, the applied toxin was converted to DON-3-O-glucoside as the detoxification product. There was a close relation between the DON-3-glucoside/DON ratio and DON resistance in the toxintreated ears (R2 = 0.84). We conclude that resistance to DON is important in the FHB resistance complex and hypothesize that Qfhs.ndsu-3BS either encodes a DON-glucosyltransferase or regulates the expression of such an enzyme.


2007 ◽  
Vol 97 (5) ◽  
pp. 592-597 ◽  
Author(s):  
S. Kumar ◽  
R. W. Stack ◽  
T. L. Friesen ◽  
J. D. Faris

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive diseases of durum (Triticum turgidum sp. durum) and common wheat (T. aestivum). Promising sources of FHB resistance have been identified among common (hexaploid) wheats, but the same is not true for durum (tetraploid) wheats. A previous study indicated that chromosome 7A from T. turgidum sp. dicoccoides accession PI478742 contributed significant levels of resistance to FHB. The objectives of this research were to develop a genetic linkage map of chromosome 7A in a population of 118 recombinant inbred lines derived from a cross between the durum cv. Langdon (LDN) and a disomic LDN-T. turgidum sp. dicoccoides PI478742 chromosome 7A substitution line [LDN-DIC 7A(742)], and identify a putative FHB resistance quantitative trait locus (QTL) on chromosome 7A derived from LDN-DIC 7A(742). The population was evaluated for type II FHB resistance in three greenhouse environments. Interval regression analysis indicated that a single QTL designated Qfhs.fcu-7AL explained 19% of the phenotypic variation and spanned an interval of 39.6 cM. Comparisons between the genetic map and a previously constructed physical map of chromosome 7A indicated that Qfhs.fcu-7AL is located in the proximal region of the long arm. This is only the second FHB QTL to be identified in a tetraploid source, and it may be useful to combine it with the QTL Qfhs.ndsu-3AS in order to develop durum wheat germ plasm and cultivars with higher levels of FHB resistance.


2019 ◽  
Vol 138 (2) ◽  
pp. 140-147 ◽  
Author(s):  
Thomas Miedaner ◽  
Cathérine P. Herter ◽  
Erhard Ebmeyer ◽  
Sonja Kollers ◽  
Viktor Korzun

Crop Science ◽  
2012 ◽  
Vol 52 (3) ◽  
pp. 1187-1194 ◽  
Author(s):  
Xianghui Zhang ◽  
Guihua Bai ◽  
Willium Bockus ◽  
Xiaojia Ji ◽  
Hongyu Pan

Crop Science ◽  
2016 ◽  
Vol 56 (4) ◽  
pp. 1473-1483 ◽  
Author(s):  
Stine Petersen ◽  
Jeanette H. Lyerly ◽  
Peter V. Maloney ◽  
Gina Brown-Guedira ◽  
Christina Cowger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document