wheat population
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 45)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Tal Dahan-Meir ◽  
Thomas James Ellis ◽  
Fabrizio Mafessoni ◽  
Hanan Sela ◽  
Jacob Manisterski ◽  
...  

Wild progenitors of major crops can help us understand domestication, and may also provide the genetic resources needed for ensuring food security in the face of climate change. We examined the genetic structure of a wild emmer wheat population, sampled over 36 years while both temperature and CO2 concentration increased significantly. The genotypes of 832 individuals revealed high genetic diversity over scales of tens of meters and were clustered spatially into ecological microhabitats. This pattern was remarkably stable over time. Simulations indicate that neutral processes alone are unlikely to fully explain the spatial and temporal stability of the population. These results are consistent with a role for local adaptation in shaping the fine-scale structure of plant populations, which is relevant for in-situ conservation strategies of biodiversity in nature.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


Author(s):  
É. Nagy ◽  
Á. Szabó-Hevér ◽  
S. Lehoczki-Krsjak ◽  
C. Lantos ◽  
E. Kiss ◽  
...  

AbstractDrought stress is one of the major abiotic factors that significantly reduces wheat grain yield. Improving drought tolerance is a challenge that plant breeders are facing nowadays. In this study, our goal was to identify quantitative trait loci (QTL) in the Plainsman V./Cappelle Desprez doubled haploid (DH) population under drought induced as decreased irrigation (ds) and well-watered (ww) conditions in glasshouse. In total, 54 QTL were detected across the three years in two water regimes linked to 10 drought tolerance-related agronomic traits. Out of the detected QTL regions several have been previously reported. The QTL on chromosome 1A (wPt-744613-wPt-8016) related to thousand grain weight was detected in both ds and ww conditions, explaining the 12.7–17.4% of the phenotypic variance. QTL for grain yield was detected on chromosomes 1A, and 6B in the ds treatment. Numerous QTL was identified under both irrigation levels.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Qiao ◽  
Justin Wheeler ◽  
Rui Wang ◽  
Kyle Isham ◽  
Natalie Klassen ◽  
...  

Cadmium (Cd) is a heavy metal that can cause a variety of adverse effects on human health, including cancer. Wheat comprises approximately 20% of the human diet worldwide; therefore, reducing the concentrations of Cd in wheat grain will have significant impacts on the intake of Cd in food products. The tests for measuring the Cd content in grain are costly, and the content is affected significantly by soil pH. To facilitate breeding for low Cd content, this study sought to identify quantitative trait loci (QTL) and associated molecular markers that can be used in molecular breeding. One spring wheat population of 181 doubled haploid lines (DHLs), which was derived from a cross between two hard white spring wheat cultivars “UI Platinum” (UIP) and “LCS Star” (LCS), was assessed for the Cd content in grain in multiple field trials in Southeast Idaho, United States. Three major QTL regions, namely, QCd.uia2-5B, QCd.uia2-7B, and QCd.uia2-7D, were identified on chromosomes 5B, 7B, and 7D, respectively. All genes in these three QTL regions were identified from the NCBI database. However, three genes related to the uptake and transport of Cd were used in the candidate gene analysis. The sequences of TraesCS5B02G388000 (TaHMA3) in the QCd.uia2-5B region and TraesCS7B02G320900 (TaHMA2) and TraesCS7B02G322900 (TaMSRMK3) in the QCd.uia2-7B region were compared between UIP and LCS. TaHMA2 on 7B is proposed for the first time as a candidate gene for grain Cd content in wheat. A KASP marker associated with this gene was developed and it will be further validated in near-isogenic lines via a gene-editing system in future studies.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Raman Dhariwal ◽  
Colin W. Hiebert ◽  
Mark E. Sorrells ◽  
Dean Spaner ◽  
Robert J. Graf ◽  
...  

Abstract Background Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. Results Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. Conclusions Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes.


Author(s):  
Simon Rio ◽  
Deniz Akdemir ◽  
Tiago Carvalho ◽  
Julio Isidro y Sánchez

Abstract Key message New forms of the coefficient of determination can help to forecast the accuracy of genomic prediction and optimize experimental designs in multi-environment trials with genotype-by-environment interactions. Abstract In multi-environment trials, the relative performance of genotypes may vary depending on the environmental conditions, and this phenomenon is commonly referred to as genotype-by-environment interaction (G$$\times$$ × E). With genomic prediction, G$$\times$$ × E can be accounted for by modeling the genetic covariance between trials, even when the overall experimental design is highly unbalanced between trials, thanks to the genomic relationship between genotypes. In this study, we propose new forms of the coefficient of determination (CD, i.e., the expected model-based square correlation between a genetic value and its corresponding prediction) that can be used to forecast the genomic prediction reliability of genotypes, both for their trial-specific performance and their mean performance. As the expected prediction reliability based on these new CD criteria is generally a good approximation of the observed reliability, we demonstrate that they can be used to optimize multi-environment trials in the presence of G$$\times$$ × E. In addition, this reliability may be highly variable between genotypes, especially in unbalanced designs with complex pedigree relationships between genotypes. Therefore, it can be useful for breeders to assess it before selecting genotypes based on their predicted genetic values. Using a wheat population evaluated both for simulated and phenology traits, and two maize populations evaluated for grain yield, we illustrate this approach and confirm the value of our new CD criteria.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2117
Author(s):  
Camille Vindras-Fouillet ◽  
Isabelle Goldringer ◽  
Gaëlle van Frank ◽  
Marc Dewalque ◽  
Axel Colin ◽  
...  

Wheat is a staple food in many diets and is currently cultivated worldwide. It provides a large proportion of the daily energy intake and contributes to food balance. Changes in agro-industrial practices in the bread sector, from the field to bread-making, have led to an increase in chronic diseases and nutritional deficits, emphasizing the link between food and health. Several levers could be used to improve the nutritional quality of bread wheat. Organic farming, by avoiding the use of pesticides, might allow for greater consumption of wholegrain products. Breeding wheat cultivars with an enhanced mineral content may serve as another lever. In this context, the on-farm participatory plant-breeding of highly diversified varieties could provide promising resources. This study investigated the sensory and nutritional quality of nine population varieties resulting from a ten-year participatory plant-breeding process compared to two commercial pure-line varieties. Analysis of variance showed genotype effects for Mg and Zn concentration, so breeding for a high Mg and Zn concentration can reasonably be envisaged. Moreover, a positive correlation was found between plant height, peduncle height (distance between the Last Leaf and Spike (LLSD)) and nutrient content. Finally, as population varieties express more differences in their profile when grown in less fertile soils, these results emphasize the benefits of genetic diversity for diverse nutritional intake and sensory properties.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Matías Schierenbeck ◽  
Ahmad M. Alqudah ◽  
Ulrike Lohwasser ◽  
Rasha A. Tarawneh ◽  
María Rosa Simón ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunhui Li ◽  
Yongli Luo ◽  
Min Jin ◽  
Shufang Sun ◽  
Zhenlin Wang ◽  
...  

The low red/far-red (R/FR) light proportion at the base of the high-density wheat population leads to poor stem quality and increases lodging risk. We used Shannong 23 and Shannong 16 as the test materials. By setting three-light quality treatments: normal light (CK), red light (RL), and far-red light (FRL), we irradiated the base internodes of the stem with RL and FRL for 7h. Our results showed that RL irradiation enhanced stem quality, as revealed by increased breaking strength, stem diameter, wall thickness and, dry weight per unit length, and the total amount of lignin and related gene expression increased, at the same time. The composition of lignin subunits was related to the lodging resistance of wheat. The proportion of S+G subunits and H subunits played a key role in wheat lodging resistance. RL could increase the content of S subunits and G subunits and the proportion of S+G subunits, reduce the proportion of H subunits. We described here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of stem breaking strength by light quality, particularly the effect of light quality on lignin biosynthesis and its relationship with lodging resistance in wheat.


Sign in / Sign up

Export Citation Format

Share Document