scholarly journals Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats

Diabetologia ◽  
1994 ◽  
Vol 37 (5) ◽  
pp. 449-459 ◽  
Author(s):  
N. E. Cameron ◽  
M. A. Cotter ◽  
V. Archibald ◽  
K. C. Dines ◽  
E. K. Maxfield
2002 ◽  
Vol 3 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Lawrence J. Coppey ◽  
Jill S. Gellett ◽  
Eric P. Davidson ◽  
Joyce A. Dunlap ◽  
Mark A. Yorek

Previously we have demonstrated that diabetes causes impairment in vascular function of epineurial vessels, which precedes the slowing of motor nerve conduction velocity. Treatment of diabetic rats with aldose reductase inhibitors, aminoguanidine or myo-inositol supplementation have been shown to improve motor nerve conduction velocity and/or decreased endoneurial blood flow. However, the effect these treatments have on vascular reactivity of epineurial vessels of the sciatic nerve is unknown. In these studies we examined the effect of treating streptozotocin-induced rats with sorbinil, aminoguanidine or myo-inositol on motor nerve conduction velocity, endoneurial blood flow and endothelium dependent vascular relaxation of arterioles that provide circulation to the region of the sciatic nerve. Treating diabetic rats with sorbinil, aminoguanidine or myo-inositol improved the reduction of endoneurial blood flow and motor nerve conduction velocity. However, only sorbinil treatment significantly improved the diabetes-induced impairment of acetylcholinemediated vasodilation of epineurial vessels of the sciatic nerve. All three treatments were efficacious in preventing the appropriate metabolic derangements associated with either activation of the polyol pathway or increased nonenzymatic glycation. In addition, sorbinil was shown to prevent the diabetes-induced decrease in lens glutathione level. However, other markers of oxidative stress were not vividly improved by these treatments. These studies suggest that sorbinil treatment may be more effective in preventing neural dysfunction in diabetes than either aminoguanidine or myoinositol.


2000 ◽  
Vol 1 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Heather Flint ◽  
Mary A. Cotter ◽  
Norman E. Cameron

Pentoxifylline has several actions that improve blood rheology and tissue perfusion and may therefore potentially be applicable to diabetic neuropathy. The aims of this study were to ascertain whether 2 weeks of treatment with pentoxifylline could correct nerve conduction velocity and blood flow deficits in 6-week streptozotocin-diabetic rats and to examine whether the effects were blocked by co-treatment with the cyclooxygenase inhibitor, flurbiprofen, or the nitric oxide synthase inhibitor,NG-nitro-ʟ-arginine. Diabetic deficits in sciatic motor and saphenous sensory nerve conduction velocity were 56.5% and 69.8% corrected, respectively, with pentoxifylline treatment. Sciatic endoneurial blood flow was approximately halved by diabetes and this deficit was 50.4% corrected by pentoxifylline. Flurbiprofen co-treatment markedly attenuated these actions of pentoxifylline on nerve conduction and blood flow whereasNG-nitro-ʟ-arginine was without effect. Thus, pentoxifylline treatment confers neurovascular benefits in experimental diabetic neuropathy, which are linked at least in part to cyclooxygenasemediated metabolism.


Sign in / Sign up

Export Citation Format

Share Document