scholarly journals Anatomy of the inferior extensor retinaculum and its role in lateral ankle ligament reconstruction: a pictorial essay

2016 ◽  
Vol 24 (4) ◽  
pp. 957-962 ◽  
Author(s):  
M. Dalmau-Pastor ◽  
Y. Yasui ◽  
J. D. Calder ◽  
J. Karlsson ◽  
G. M. M. J. Kerkhoffs ◽  
...  
2013 ◽  
Vol 34 (7) ◽  
pp. 995-1005 ◽  
Author(s):  
Alexandre Burn ◽  
Yannick Buerer ◽  
Swati Chopra ◽  
Michaela Winkler ◽  
Xavier Crevoisier

2020 ◽  
Vol 8 (10) ◽  
pp. 232596712095928
Author(s):  
Martina Gautschi ◽  
Elias Bachmann ◽  
Camila Shirota ◽  
Tobias Götschi ◽  
Niklas Renner ◽  
...  

Background: Anatomic lateral ankle ligament reconstruction has been proposed for patients with chronic ankle instability. A reliable approach is a reconstruction technique using an allograft and 2 fibular tunnels. A recently introduced approach that entails 1–fibular tunnel reconstruction might reduce the risk of intraoperative complications and ultimately improve patient outcome. Hypothesis: We hypothesized that both reconstruction techniques show similar ankle stability (joint laxity and stiffness) and are similar to the intact joint condition. Study Design: Controlled laboratory study. Methods: A total of 10 Thiel-conserved cadaveric ankles were divided into 2 groups and tested in 3 stages—intact, transected, and reconstructed lateral ankle ligaments—using either the 1– or the 2–fibular tunnel technique. To quantify stability in each stage, anterior drawer and talar tilt tests were performed in 0°, 10°, and 20° of plantarflexion (anterior drawer test) or dorsiflexion (talar tilt test). Bone displacements were measured using motion capture, from which laxity and stiffness were calculated together with applied forces. Finally, reconstructed ligaments were tested to failure in neutral position with a maximal applicable torque in inversion. A mixed linear model was used to describe and compare the outcomes. Results: When ankle stability of intact and reconstructed ligaments was compared, no significant difference was found between reconstruction techniques for any flexion angle. Also, no significant difference was found when the maximal applicable torque of the 1-tunnel technique (9.1 ± 4.4 N·m) was compared with the 2-tunnel technique (8.9 ± 4.8 N·m). Conclusion: Lateral ankle ligament reconstruction with an allograft using 1 fibular tunnel demonstrated similar biomechanical stability to the 2-tunnel approach. Clinical Relevance: Demonstrating similar stability in a cadaveric study and given the potential to reduce intraoperative complications, the 1–fibular tunnel approach should be considered a viable option for the surgical therapy of chronic ankle instability. Clinical randomized prospective trials are needed to determine the clinical outcome of the 1-tunnel approach.


2016 ◽  
Vol 45 (4) ◽  
pp. 922-928 ◽  
Author(s):  
Chul Hyun Park ◽  
Woo-Chun Lee

Background: The anterior half of the peroneus longus tendon (AHPLT) has been reported to be an effective autograft for ligament reconstruction with respect to strength and safety. However, there is little information regarding donor site morbidity after harvesting the AHPLT. Furthermore, to the best of our knowledge, there has not been a study on the isokinetic evaluation of ankle plantar flexion and eversion after AHPLT harvesting. Purpose: To evaluate the clinical and radiographic results after lateral ankle ligament reconstruction using the AHPLT. We further investigated whether harvesting the AHPLT for lateral ankle ligament reconstruction decreases the strength of ankle plantar flexion and eversion. Study Design: Case series; Level of evidence, 4. Methods: Thirty consecutive patients (31 cases) were treated by anatomic lateral ligament reconstruction using the AHPLT. For the clinical assessment, visual analog scale (VAS), American Orthopaedic Foot and Ankle Society (AOFAS), and Karlsson-Peterson scores were evaluated preoperatively and at the last follow-up. For the radiographic assessment, talar tilt angle and anterior talar displacement were measured preoperatively and at the last follow-up. The peak isokinetic torques for ankle plantar flexion at angular velocities of 30 and 120 deg/s and eversion at angular velocities of 30 and 60 deg/s were measured at a minimum of 1 year after surgery. Results: The mean VAS score improved significantly from 6.4 ± 1.7 preoperatively to 1.6 ± 1.5 at the last follow-up ( P < .001). The mean respective AOFAS and Karlsson-Peterson scores improved significantly from 57.2 ± 12.8 and 66.9 ± 13.6 preoperatively to 89.0 ± 10.0 and 93.3 ± 5.7 at the last follow-up ( P < .001). The mean talar tilt angle improved significantly from 15.3° ± 6.2° preoperatively to 3.4° ± 3.0° at the last follow-up ( P < .001), and the mean anterior talar displacement improved significantly from 10.2 ± 3.3 mm preoperatively to 6.3 ± 1.9 mm at the last follow-up ( P < .001). No significant differences were observed between the uninvolved and involved legs in the mean peak torque for plantar flexion at angular speeds of 30 deg/s ( P = .517) and 120 deg/s ( P = .347) or for eversion at angular speeds of 30 deg/s ( P = .913) and 60 deg/s ( P = .983). Conclusion: Anatomic lateral ligament reconstruction using the AHPLT showed good clinical and radiographic results without a significant decrease in the peroneus longus strength. Lateral ligament reconstruction using the AHPLT may be a good surgical option for the treatment of chronic ankle instability.


Sign in / Sign up

Export Citation Format

Share Document