Study on the magnetic abrasive finishing process using alternating magnetic field: investigation of mechanism and applied to aluminum alloy plate

2019 ◽  
Vol 102 (5-8) ◽  
pp. 1509-1520 ◽  
Author(s):  
Huijun Xie ◽  
Yanhua Zou ◽  
Chaowen Dong ◽  
Jinzhong Wu
Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Huijun Xie ◽  
Yanhua Zou

The magnetic abrasive finishing (MAF) process is an ultra-precision surface finishing process. In order to further improve the finishing efficiency and surface quality, the MAF process using an alternating magnetic field was proposed in the previous research, and it was proven that the alternating magnetic field has advantages compared with the static magnetic field. In order to further develop the process, this study investigated the effect on finishing characteristics when the alternating current waveform is a square wave. The difference between the fluctuation behavior of the magnetic cluster in two alternating magnetic fields (sine wave and square wave) is observed and analyzed. Through analysis, it can be concluded that the use of a square wave can make the magnetic cluster fluctuate faster, and as the size of the magnetic particles decreases, the difference between the magnetic cluster fluctuation speed of the two waveforms is greater. The experimental results show that the surface roughness of SUS304 stainless steel plate improves from 328 nm Ra to 14 nm Ra within 40 min.


2013 ◽  
Vol 395-396 ◽  
pp. 985-989 ◽  
Author(s):  
Jin Zhong Wu ◽  
Yan Hua Zou

In this paper, a new plane magnetic abrasive finishing process by using alternating magnetic field is proposed to improve the efficiency and surface precision. In alternating magnetic field, the forced direction of magnetic particles is changing. Therefore, magnetic particles could produce the up and down movement, which promote the scatter of magnetic particles , improve the roll of abrasive particles and enhance the utilization of abrasive. In order to know well the magnetic intensity distribution in processing area, measured the magnetic flux density. Finishing force is important to understand the mechanism of material removal, investigated to the finishing force and contrasted to the movement changes of magnetic particles in water-soluble finishing fluid and oily finishing fluid. A set of experimental devices have been designed to realize surface polishing on C2801 brass plate, the results proved the feasibility of this method, which can improve the workpiece surface quality.


Sign in / Sign up

Export Citation Format

Share Document