Using visual statistical inference to better understand random class separations in high dimension, low sample size data

2014 ◽  
Vol 30 (2) ◽  
pp. 293-316 ◽  
Author(s):  
Niladri Roy Chowdhury ◽  
Dianne Cook ◽  
Heike Hofmann ◽  
Mahbubul Majumder ◽  
Eun-Kyung Lee ◽  
...  
2017 ◽  
Vol 30 (2) ◽  
pp. 137-158
Author(s):  
Makoto Aoshima ◽  
Kazuyoshi Yata

2019 ◽  
Vol 109 (2) ◽  
pp. 279-306
Author(s):  
Soham Sarkar ◽  
Rahul Biswas ◽  
Anil K. Ghosh
Keyword(s):  

Author(s):  
Bo Liu ◽  
Ying Wei ◽  
Yu Zhang ◽  
Qiang Yang

Deep neural networks (DNN) have achieved breakthroughs in applications with large sample size. However, when facing high dimension, low sample size (HDLSS) data, such as the phenotype prediction problem using genetic data in bioinformatics, DNN suffers from overfitting and high-variance gradients. In this paper, we propose a DNN model tailored for the HDLSS data, named Deep Neural Pursuit (DNP). DNP selects a subset of high dimensional features for the alleviation of overfitting and takes the average over multiple dropouts to calculate gradients with low variance. As the first DNN method applied on the HDLSS data, DNP enjoys the advantages of the high nonlinearity, the robustness to high dimensionality, the capability of learning from a small number of samples, the stability in feature selection, and the end-to-end training. We demonstrate these advantages of DNP via empirical results on both synthetic and real-world biological datasets.


Sign in / Sign up

Export Citation Format

Share Document