A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups

1998 ◽  
Vol 311 (4) ◽  
pp. 765-790 ◽  
Author(s):  
Jens Franke ◽  
Joachim Schwermer
2004 ◽  
Vol 123 (1) ◽  
pp. 141-169 ◽  
Author(s):  
Jian-Shu Li ◽  
Joachim Schwermer

Author(s):  
Anantharam Raghuram ◽  
Günter Harder

This book studies the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel–Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin–Selberg L-functions for GL(n) × GL(m), where n + m = N. The book carries through the entire program with an eye toward generalizations. The book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups.


2009 ◽  
Vol 146 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Harald Grobner

AbstractLetGbe the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8of rank four. The cohomology of the space of automorphic forms onGhas a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomologyHqEis(G,E) ofGin the case of regular coefficientsE. It is spanned only by holomorphic Eisenstein series. For non-regular coefficientsEwe really have to detect the poles of our Eisenstein series. SinceGis not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi,On certainL-functions, Amer. J. Math.103(1981), 297–355; F. Shahidi,On the Ramanujan conjecture and finiteness of poles for certainL-functions, Ann. of Math. (2)127(1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolicP0ofG. Having collected this information, we determine the square-integrable Eisenstein cohomology supported byP0with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.


1989 ◽  
Vol 41 (2) ◽  
pp. 285-320 ◽  
Author(s):  
W. Casselman

Let G be the group of R-rational points on a reductive group defined over Q and T an arithmetic subgroup. The aim of this paper is to describe in some detail the Schwartz space (whose definition I recall in Section 1) and in particular to explain a decomposition of this space into constituents parametrized by the T-associate classes of rational parabolic subgroups of G. This is analogous to the more elementary of the two well known decompositions of L2 (T\G) in [20](or [17]), and a proof of something equivalent was first sketched by Langlands himself in correspondence with A. Borel in 1972. (Borel has given an account of this in [8].)Langlands’ letter was in response to a question posed by Borel concerning a decomposition of the cohomology of arithmetic groups, and the decomposition I obtain here was motivated by a similar question, which is dealt with at the end of the paper.


2017 ◽  
Vol 13 (4) ◽  
pp. 2941-2973
Author(s):  
Eva Bayer-Fluckiger ◽  
Philippe Elbaz-Vincent ◽  
Graham Ellis

Sign in / Sign up

Export Citation Format

Share Document