scholarly journals Selmer groups of abelian varieties in extensions of function fields

2008 ◽  
Vol 261 (4) ◽  
pp. 787-804 ◽  
Author(s):  
Amílcar Pacheco
Author(s):  
TADASHI OCHIAI ◽  
FABIEN TRIHAN

AbstractWe study a (p-adic) geometric analogue for abelian varieties over a function field of characteristic p of the cyclotomic Iwasawa theory and the non-commutative Iwasawa theory for abelian varieties over a number field initiated by Mazur and Coates respectively. We will prove some analogue of the principal results obtained in the case over a number field and we study new phenomena which did not happen in the case of number field case. We also propose a conjecture (Conjecture 1.6) which might be considered as a counterpart of the principal conjecture in the case over a number field.


2020 ◽  
Vol 2020 (762) ◽  
pp. 1-33
Author(s):  
Mohamed Saïdi ◽  
Akio Tamagawa

AbstractWe prove some new results on the arithmetic of abelian varieties over function fields of one variable over finitely generated (infinite) fields. Among other things, we introduce certain new natural objects “discrete Selmer groups” and “discrete Shafarevich–Tate groups”, and prove that they are finitely generated {\mathbb{Z}}-modules. Further, we prove that in the isotrivial case, the discrete Shafarevich–Tate group vanishes and the discrete Selmer group coincides with the Mordell–Weil group. One of the key ingredients to prove these results is a new specialisation theorem for first Galois cohomology groups, which generalises Néron’s specialisation theorem for rational points of abelian varieties.


2020 ◽  
Vol 16 (09) ◽  
pp. 2041-2094
Author(s):  
Malte Witte

We formulate and prove an analogue of the non-commutative Iwasawa Main Conjecture for [Formula: see text]-adic representations of the Galois group of a function field of characteristic [Formula: see text]. We also prove a functional equation for the resulting non-commutative [Formula: see text]-functions. As corollaries, we obtain non-commutative generalizations of the main conjecture for Picard-[Formula: see text]-motives of Greither and Popescu and a main conjecture for abelian varieties over function fields in precise analogy to the [Formula: see text] main conjecture of Coates, Fukaya, Kato, Sujatha and Venjakob.


2016 ◽  
Vol 112 (6) ◽  
pp. 1040-1058 ◽  
Author(s):  
King Fai Lai ◽  
Ignazio Longhi ◽  
Ki-Seng Tan ◽  
Fabien Trihan

Sign in / Sign up

Export Citation Format

Share Document