weil group
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David R. Morrison ◽  
Washington Taylor

Abstract We prove that, for every 6D supergravity theory that has an F-theory description, the property of charge completeness for the connected component of the gauge group (meaning that all charges in the corresponding charge lattice are realized by massive or massless states in the theory) is equivalent to a standard assumption made in F-theory for how geometry encodes the global gauge theory by means of the Mordell-Weil group of the elliptic fibration. This result also holds in 4D F-theory constructions for the parts of the gauge group that come from sections and from 7-branes. We find that in many 6D F-theory models the full charge lattice of the theory is generated by massless charged states; this occurs for each gauge factor where the associated anomaly coefficient satisfies a simple positivity condition. We describe many of the cases where this massless charge sufficiency condition holds, as well as exceptions where the positivity condition fails, and analyze the related global structure of the gauge group and associated Mordell-Weil torsion in explicit F-theory models.


Author(s):  
WERNER BLEY ◽  
DANIEL MACIAS CASTILLO

Abstract Let A be an abelian variety defined over a number field k, let p be an odd prime number and let $F/k$ be a cyclic extension of p-power degree. Under not-too-stringent hypotheses we give an interpretation of the p-component of the relevant case of the equivariant Tamagawa number conjecture in terms of integral congruence relations involving the evaluation on appropriate points of A of the ${\rm Gal}(F/k)$ -valued height pairing of Mazur and Tate. We then discuss the numerical computation of this pairing, and in particular obtain the first numerical verifications of this conjecture in situations in which the p-completion of the Mordell–Weil group of A over F is not a projective Galois module.


Author(s):  
Bas Edixhoven ◽  
Guido Lido

Abstract Since Faltings proved Mordell’s conjecture in [16] in 1983, we have known that the sets of rational points on curves of genus at least $2$ are finite. Determining these sets in individual cases is still an unsolved problem. Chabauty’s method (1941) [10] is to intersect, for a prime number p, in the p-adic Lie group of p-adic points of the Jacobian, the closure of the Mordell–Weil group with the p-adic points of the curve. Under the condition that the Mordell–Weil rank is less than the genus, Chabauty’s method, in combination with other methods such as the Mordell–Weil sieve, has been applied successfully to determine all rational points in many cases. Minhyong Kim’s nonabelian Chabauty programme aims to remove the condition on the rank. The simplest case, called quadratic Chabauty, was developed by Balakrishnan, Besser, Dogra, Müller, Tuitman and Vonk, and applied in a tour de force to the so-called cursed curve (rank and genus both $3$ ). This article aims to make the quadratic Chabauty method small and geometric again, by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the Jacobian and models over the integers).


Author(s):  
Abolfazl Mohajer

AbstractIn this paper, using a generalization of the notion of Prym variety for covers of projective varieties, we prove a structure theorem for the Mordell–Weil group of abelian varieties over function fields that are twists of abelian varieties by Galois covers of smooth projective varieties. In particular, the results we obtain contribute to the construction of Jacobians of high rank.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Markus Dierigl ◽  
Paul-Konstantin Oehlmann ◽  
Fabian Ruehle

Abstract Six-dimensional $$ \mathcal{N} $$ N = (1, 0) superconformal field theories can be engineered geometrically via F-theory on elliptically-fibered Calabi-Yau 3-folds. We include torsional sections in the geometry, which lead to a finite Mordell-Weil group. This allows us to identify the full non-Abelian group structure rather than just the algebra. The presence of torsion also modifies the center of the symmetry groups and the matter representations that can appear. This in turn affects the tensor branch of these theories. We analyze this change for a large class of superconformal theories with torsion and explicitly construct their tensor branches. Finally, we elaborate on the connection to the dual heterotic and M-theory description, in which our configurations are interpreted as generalizations of discrete holonomy instantons.


2020 ◽  
Vol 32 (1) ◽  
pp. 231-258
Author(s):  
Harris B. Daniels ◽  
Álvaro Lozano-Robledo ◽  
Erik Wallace

2020 ◽  
Vol 2020 (762) ◽  
pp. 1-33
Author(s):  
Mohamed Saïdi ◽  
Akio Tamagawa

AbstractWe prove some new results on the arithmetic of abelian varieties over function fields of one variable over finitely generated (infinite) fields. Among other things, we introduce certain new natural objects “discrete Selmer groups” and “discrete Shafarevich–Tate groups”, and prove that they are finitely generated {\mathbb{Z}}-modules. Further, we prove that in the isotrivial case, the discrete Shafarevich–Tate group vanishes and the discrete Selmer group coincides with the Mordell–Weil group. One of the key ingredients to prove these results is a new specialisation theorem for first Galois cohomology groups, which generalises Néron’s specialisation theorem for rational points of abelian varieties.


2020 ◽  
Vol 102 (2) ◽  
pp. 177-185
Author(s):  
RICARDO CONCEIÇÃO

Let $k$ be a finite field and $L$ be the function field of a curve $C/k$ of genus $g\geq 1$. In the first part of this note we show that the number of separable $S$-integral points on a constant elliptic curve $E/L$ is bounded solely in terms of $g$ and the size of $S$. In the second part we assume that $L$ is the function field of a hyperelliptic curve $C_{A}:s^{2}=A(t)$, where $A(t)$ is a square-free $k$-polynomial of odd degree. If $\infty$ is the place of $L$ associated to the point at infinity of $C_{A}$, then we prove that the set of separable $\{\infty \}$-points can be bounded solely in terms of $g$ and does not depend on the Mordell–Weil group $E(L)$. This is done by bounding the number of separable integral points over $k(t)$ on elliptic curves of the form $E_{A}:A(t)y^{2}=f(x)$, where $f(x)$ is a polynomial over $k$. Additionally, we show that, under an extra condition on $A(t)$, the existence of a separable integral point of ‘small’ height on the elliptic curve $E_{A}/k(t)$ determines the isomorphism class of the elliptic curve $y^{2}=f(x)$.


Sign in / Sign up

Export Citation Format

Share Document