scholarly journals Positivity of the CM line bundle for families of K-stable klt Fano varieties

Author(s):  
Giulio Codogni ◽  
Zsolt Patakfalvi

AbstractThe Chow–Mumford (CM) line bundle is a functorial line bundle on the base of any family of klt Fano varieties. It is conjectured that it yields a polarization on the moduli space of K-poly-stable klt Fano varieties. Proving ampleness of the CM line bundle boils down to showing semi-positivity/positivity statements about the CM-line bundle for families with K-semi-stable/K-polystable fibers. We prove the necessary semi-positivity statements in the K-semi-stable situation, and the necessary positivity statements in the uniform K-stable situation, including in both cases variants assuming K-stability only for general fibers. Our statements work in the most general singular situation (klt singularities), and the proofs are algebraic, except the computation of the limit of a sequence of real numbers via the central limit theorem of probability theory. We also present an application to the classification of Fano varieties. Additionally, our semi-positivity statements work in general for log-Fano pairs.

2019 ◽  
pp. 43-66
Author(s):  
Steven J. Osterlind

This chapter advances the historical context for quantification by describing the climate of the day—social, cultural, political, and intellectual—as fraught with disquieting influences. Forces leading to the French Revolution were building, and the colonists in America were fighting for secession from England. During this time, three important number theorems came into existence: the binomial theorem, the law of large numbers, and the central limit theorem. Each is described in easy-to-understand language. These are fundamental to how numbers operate in a probability circumstance. Pascal’s triangle is explained as a shortcut solving some binomial expansions, and Jacob Bernoulli’s Ars Conjectandi, which presents the study of measurement “error” for the first time, is discussed. In addition, the central limit theorem is explained in terms of its relevance to probability theory, and its utility today.


Author(s):  
Alan Hájek ◽  
Christopher Hitchcock

In this chapter the basics of probability theory are introduced, with particular attention to those topics that are most important for applications in philosophy. The formalism is described in two passes. The first presents finite probability, which suffices for most philosophical discussions of probability. The second presents measure theory, which is needed for applications involving infinities or limits. Key concepts such as conditional probability, probabilistic independence, random variables, and expectation are defined. In addition, several important theorems, including Bayes’ theorem, the weak and strong laws of large numbers, and the central limit theorem are defined. Along the way, several familiar puzzles or paradoxes involving probability are discussed.


2017 ◽  
Vol 67 (6) ◽  
Author(s):  
Beloslav Riečan ◽  
Karol Samuelčik

AbstractThe additivity of considered measures or integrals resp. can be omitted in some problems of mathematical analysis and its applications. In the paper it is shown that similar situations are possible also in the probability theory. As an example is proved a generalized version of the central limit theorem about the convergence of arithmetical means of independent random variables to the Gauss distribution.


Sign in / Sign up

Export Citation Format

Share Document