scholarly journals The versal deformation of an isolated toric Gorenstein singularity

1997 ◽  
Vol 128 (3) ◽  
pp. 443-479 ◽  
Author(s):  
Klaus Altmann

1972 ◽  
Vol 196 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Arnold Kas ◽  
Michael Schlessinger


2015 ◽  
Vol 444 ◽  
pp. 81-123 ◽  
Author(s):  
Gebhard Böckle ◽  
Ann-Kristin Juschka


2004 ◽  
Vol 279 (2) ◽  
pp. 613-637 ◽  
Author(s):  
Trond Stølen Gustavsen ◽  
Runar Ile




2008 ◽  
Vol 36 (6) ◽  
pp. 2233-2253 ◽  
Author(s):  
Ashis Mandal


2020 ◽  
Vol 20 (3) ◽  
pp. 319-330
Author(s):  
D. A. H. Ament ◽  
J. J. Nuño-Ballesteros ◽  
J. N. Tomazella

AbstractLet (X, 0) ⊂ (ℂn, 0) be an irreducible weighted homogeneous singularity curve and let f : (X, 0) → (ℂ2, 0) be a finite map germ, one-to-one and weighted homogeneous with the same weights of (X, 0). We show that 𝒜e-codim(X, f) = μI(f), where the 𝒜e-codimension 𝒜e-codim(X, f) is the minimum number of parameters in a versal deformation and μI(f) is the image Milnor number, i.e. the number of vanishing cycles in the image of a stabilization of f.





Sign in / Sign up

Export Citation Format

Share Document