scholarly journals Reachability Problems on Reliable and Lossy Queue Automata

Author(s):  
Chris Köcher

AbstractWe study the reachability problem for queue automata and lossy queue automata. Concretely, we consider the set of queue contents which are forwards resp. backwards reachable from a given set of queue contents. Here, we prove the preservation of regularity if the queue automaton loops through some special sets of transformation sequences. This is a generalization of the results by Boigelot et al. and Abdulla et al. regarding queue automata looping through a single sequence of transformations. We also prove that our construction is possible in polynomial time.

1993 ◽  
Vol 29 (11) ◽  
pp. 1352-1360
Author(s):  
Keiko TAKAHASHI ◽  
Kiyohiko NAKAMURA ◽  
Atsunobu ICHIKAWA

2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Jeremy Sproston

Clock-dependent probabilistic timed automata extend classical timed automata with discrete probabilistic choice, where the probabilities are allowed to depend on the exact values of the clocks. Previous work has shown that the quantitative reachability problem for clock-dependent probabilistic timed automata with at least three clocks is undecidable. In this paper, we consider the subclass of clock-dependent probabilistic timed automata that have one clock, that have clock dependencies described by affine functions, and that satisfy an initialisation condition requiring that, at some point between taking edges with non-trivial clock dependencies, the clock must have an integer value. We present an approach for solving in polynomial time quantitative and qualitative reachability problems of such one-clock initialised clock-dependent probabilistic timed automata. Our results are obtained by a transformation to interval Markov decision processes.


Author(s):  
Sidi Mohamed Beillahi ◽  
Ahmed Bouajjani ◽  
Constantin Enea

AbstractConcurrent accesses to databases are typically encapsulated in transactions in order to enable isolation from other concurrent computations and resilience to failures. Modern databases provide transactions with various semantics corresponding to different trade-offs between consistency and availability. Since a weaker consistency model provides better performance, an important issue is investigating the weakest level of consistency needed by a given program (to satisfy its specification). As a way of dealing with this issue, we investigate the problem of checking whether a given program has the same set of behaviors when replacing a consistency model with a weaker one. This property known as robustness generally implies that any specification of the program is preserved when weakening the consistency. We focus on the robustness problem for consistency models which are weaker than standard serializability, namely, causal consistency, prefix consistency, and snapshot isolation. We show that checking robustness between these models is polynomial time reducible to a state reachability problem under serializability. We use this reduction to also derive a pragmatic proof technique based on Lipton’s reduction theory that allows to prove programs robust. We have applied our techniques to several challenging applications drawn from the literature of distributed systems and databases.


2018 ◽  
Vol 60 (2) ◽  
pp. 360-375
Author(s):  
A. V. Vasil'ev ◽  
D. V. Churikov

10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Author(s):  
Yishay Mor ◽  
Claudia V. Goldman ◽  
Jeffrey S. Rosenschein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document