reachability problem
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Jeremy Sproston

Clock-dependent probabilistic timed automata extend classical timed automata with discrete probabilistic choice, where the probabilities are allowed to depend on the exact values of the clocks. Previous work has shown that the quantitative reachability problem for clock-dependent probabilistic timed automata with at least three clocks is undecidable. In this paper, we consider the subclass of clock-dependent probabilistic timed automata that have one clock, that have clock dependencies described by affine functions, and that satisfy an initialisation condition requiring that, at some point between taking edges with non-trivial clock dependencies, the clock must have an integer value. We present an approach for solving in polynomial time quantitative and qualitative reachability problems of such one-clock initialised clock-dependent probabilistic timed automata. Our results are obtained by a transformation to interval Markov decision processes.


2021 ◽  
Vol 68 (5) ◽  
pp. 1-43
Author(s):  
Michael Blondin ◽  
Matthias Englert ◽  
Alain Finkel ◽  
Stefan GÖller ◽  
Christoph Haase ◽  
...  

We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then there exists a witnessing path whose sequence of transitions is contained in a bounded language defined by a regular expression of pseudo-polynomially bounded length. This, in turn, enables us to prove that the lengths of minimal reachability witnesses are pseudo-polynomially bounded.


2021 ◽  
Author(s):  
Wei Liao ◽  
Xiaohui Wei ◽  
Jizhou Lai

2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Michael Blondin ◽  
Mikhail Raskin

Vector addition systems with states (VASS) are widely used for the formal verification of concurrent systems. Given their tremendous computational complexity, practical approaches have relied on techniques such as reachability relaxations, e.g., allowing for negative intermediate counter values. It is natural to question their feasibility for VASS enriched with primitives that typically translate into undecidability. Spurred by this concern, we pinpoint the complexity of integer relaxations with respect to arbitrary classes of affine operations. More specifically, we provide a trichotomy on the complexity of integer reachability in VASS extended with affine operations (affine VASS). Namely, we show that it is NP-complete for VASS with resets, PSPACE-complete for VASS with (pseudo-)transfers and VASS with (pseudo-)copies, and undecidable for any other class. We further present a dichotomy for standard reachability in affine VASS: it is decidable for VASS with permutations, and undecidable for any other class. This yields a complete and unified complexity landscape of reachability in affine VASS. We also consider the reachability problem parameterized by a fixed affine VASS, rather than a class, and we show that the complexity landscape is arbitrary in this setting.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Michael Blondin ◽  
Christoph Haase ◽  
Filip Mazowiecki ◽  
Mikhail Raskin

We study the reachability problem for affine $\mathbb{Z}$-VASS, which are integer vector addition systems with states in which transitions perform affine transformations on the counters. This problem is easily seen to be undecidable in general, and we therefore restrict ourselves to affine $\mathbb{Z}$-VASS with the finite-monoid property (afmp-$\mathbb{Z}$-VASS). The latter have the property that the monoid generated by the matrices appearing in their affine transformations is finite. The class of afmp-$\mathbb{Z}$-VASS encompasses classical operations of counter machines such as resets, permutations, transfers and copies. We show that reachability in an afmp-$\mathbb{Z}$-VASS reduces to reachability in a $\mathbb{Z}$-VASS whose control-states grow linearly in the size of the matrix monoid. Our construction shows that reachability relations of afmp-$\mathbb{Z}$-VASS are semilinear, and in particular enables us to show that reachability in $\mathbb{Z}$-VASS with transfers and $\mathbb{Z}$-VASS with copies is PSPACE-complete. We then focus on the reachability problem for affine $\mathbb{Z}$-VASS with monogenic monoids: (possibly infinite) matrix monoids generated by a single matrix. We show that, in a particular case, the reachability problem is decidable for this class, disproving a conjecture about affine $\mathbb{Z}$-VASS with infinite matrix monoids we raised in a preliminary version of this paper. We complement this result by presenting an affine $\mathbb{Z}$-VASS with monogenic matrix monoid and undecidable reachability relation.


2021 ◽  
Vol 30 (4) ◽  
pp. 1-46
Author(s):  
Jingbo Lu ◽  
Dongjie He ◽  
Jingling Xue

Object sensitivity is widely used as a context abstraction for computing the points-to information context-sensitively for object-oriented programming languages such as Java. Due to the combinatorial explosion of contexts in large object-oriented programs, k -object-sensitive pointer analysis (under k -limiting), denoted k -obj , is often inefficient even when it is scalable for small values of k , where k ⩽ 2 holds typically. A recent popular approach for accelerating k -obj trades precision for efficiency by instructing k -obj to analyze only some methods in a program context-sensitively, determined heuristically by a pre-analysis. In this article, we investigate how to develop a fundamentally different approach, Eagle , for designing a pre-analysis that can make k -obj run significantly faster while maintaining its precision. The novelty of Eagle is to enable k -obj to analyze a method with partial context sensitivity (i.e., context-sensitively for only some of its selected variables/allocation sites) by solving a context-free-language (CFL) reachability problem based on a new CFL-reachability formulation of k -obj . By regularizing one CFL for specifying field accesses and using another CFL for specifying method calls, we have formulated Eagle as a fully context-sensitive taint analysis (without k -limiting) that is both effective (by selecting the variables/allocation sites to be analyzed by k -obj context-insensitively so as to reduce the number of context-sensitive facts inferred by k -obj in the program) and efficient (by running linearly in terms of the number of pointer assignment edges in the program). As Eagle represents the first precision-preserving pre-analysis, our evaluation focuses on demonstrating its significant performance benefits in accelerating k -obj for a set of popular Java benchmarks and applications, with call graph construction, may-fail-casting, and polymorphic call detection as three important client analyses.


Author(s):  
Chris Köcher

AbstractWe study the reachability problem for queue automata and lossy queue automata. Concretely, we consider the set of queue contents which are forwards resp. backwards reachable from a given set of queue contents. Here, we prove the preservation of regularity if the queue automaton loops through some special sets of transformation sequences. This is a generalization of the results by Boigelot et al. and Abdulla et al. regarding queue automata looping through a single sequence of transformations. We also prove that our construction is possible in polynomial time.


Author(s):  
Michael Blondin ◽  
Javier Esparza ◽  
Stefan Jaax ◽  
Philipp J. Meyer

AbstractPopulation protocols are a well established model of computation by anonymous, identical finite-state agents. A protocol is well-specified if from every initial configuration, all fair executions of the protocol reach a common consensus. The central verification question for population protocols is the well-specification problem: deciding if a given protocol is well-specified. Esparza et al. have recently shown that this problem is decidable, but with very high complexity: it is at least as hard as the Petri net reachability problem, which is -hard, and for which only algorithms of non-primitive recursive complexity are currently known. In this paper we introduce the class $${ WS}^3$$ WS 3 of well-specified strongly-silent protocols and we prove that it is suitable for automatic verification. More precisely, we show that $${ WS}^3$$ WS 3 has the same computational power as general well-specified protocols, and captures standard protocols from the literature. Moreover, we show that the membership and correctness problems for $${ WS}^3$$ WS 3 reduce to solving boolean combinations of linear constraints over $${\mathbb {N}}$$ N . This allowed us to develop the first software able to automatically prove correctness for all of the infinitely many possible inputs.


2021 ◽  
Vol 34 (2) ◽  
pp. 133-177
Author(s):  
Javier Esparza ◽  
Stefan Jaax ◽  
Mikhail Raskin ◽  
Chana Weil-Kennedy

AbstractPopulation protocols (Angluin et al. in PODC, 2004) are a model of distributed computation in which indistinguishable, finite-state agents interact in pairs to decide if their initial configuration, i.e., the initial number of agents in each state, satisfies a given property. In a seminal paper Angluin et al. classified population protocols according to their communication mechanism, and conducted an exhaustive study of the expressive power of each class, that is, of the properties they can decide (Angluin et al. in Distrib Comput 20(4):279–304, 2007). In this paper we study the correctness problem for population protocols, i.e., whether a given protocol decides a given property. A previous paper (Esparza et al. in Acta Inform 54(2):191–215, 2017) has shown that the problem is decidable for the main population protocol model, but at least as hard as the reachability problem for Petri nets, which has recently been proved to have non-elementary complexity. Motivated by this result, we study the computational complexity of the correctness problem for all other classes introduced by Angluin et al., some of which are less powerful than the main model. Our main results show that for the class of observation models the complexity of the problem is much lower, ranging from $$\varPi _2^p$$ Π 2 p to .


Sign in / Sign up

Export Citation Format

Share Document