Graded rings of Hermitian modular forms with singularities
AbstractWe study graded rings of meromorphic Hermitian modular forms of degree two whose poles are supported on an arrangement of Heegner divisors. For the group $$\mathrm {SU}_{2,2}({\mathcal {O}}_K)$$ SU 2 , 2 ( O K ) where K is the imaginary-quadratic number field of discriminant $$-d$$ - d , $$d \in \{4, 7,8,11,15,19,20,24\}$$ d ∈ { 4 , 7 , 8 , 11 , 15 , 19 , 20 , 24 } we obtain a polynomial algebra without relations. In particular the Looijenga compactifications of the arrangement complements are weighted projective spaces.