Investigation of retinal nerve fiber layer thickness and ganglion cell layer-inner plexiform layer thickness in patients with optic pathway gliomas

2018 ◽  
Vol 256 (9) ◽  
pp. 1757-1765 ◽  
Author(s):  
Mustafa Hepokur ◽  
Ahmet Murat Sarici
2016 ◽  
Vol 37 (3) ◽  
pp. 591-598 ◽  
Author(s):  
Muhammed Şahin ◽  
Alparslan Şahin ◽  
Faruk Kılınç ◽  
Harun Yüksel ◽  
Zeynep Gürsel Özkurt ◽  
...  

Author(s):  
Yasuaki Kamata ◽  
Naoto Hara ◽  
Tsukasa Satou ◽  
Takahiro Niida ◽  
Kazuo Mukuno

Abstract Purpose The pathology of Parkinson's disease (PD) is suspected to affect the retina and choroid. We investigated changes in the retina and choroid of patients with PD using optical coherence tomography. Methods We examined 14 patients with PD and 22 patients without PD. Patients without PD had no ophthalmic disease other than cataracts. In addition, it was also confirmed that there was no neurodegenerative disease. The retinal nerve fiber layer, ganglion cell layer + inner plexiform layer, and choroidal thickness were compared between both groups. Additionally, the choroidal image was divided into the choroid area, luminal area, and interstitial area using the binarization method, and the area of each region and the percentage of luminal area in the choroid area were analyzed. Results Patients with PD had a significantly thinner ganglion cell layer + inner plexiform layer compared to those without PD. The choroid area, luminal area, and interstitial area were significantly decreased in patients with PD compared to those without PD. Seven patients with PD who were successfully followed up showed decreased retinal nerve fiber layer and interstitial area after 3 years. Conclusion Autonomic nervous disorders and neurodegeneration in PD can cause thinning of the retina and choroid, as well as a reduction in the choroid area.


2021 ◽  
Author(s):  
Makoto Araie ◽  
Makoto Fujii ◽  
Yuko Ohno ◽  
Yuki Tanaka ◽  
Tsutomu Kikawa ◽  
...  

Abstract Aging-associated changes in visual field (VF) sensitivity were compared prospectively and longitudinally with the circumpapillary retinal nerve fiber layer thickness (cpRNFLT) and macular ganglion cell-inner plexiform layer thickness (GCIPLT) changes in the corresponding retinal areas of the same eyes (72 eyes of 37 normal Japanese subjects; mean age, 51.3 years). The Humphrey Field Analyzer 24-2 test (HFA 24-2) and spectral-domain optical coherence tomography (SD-OCT) measurements of the cpRNFLT and GCIPLT in a 0.6-mm-diameter circle corresponding to the four central points of HFA 24-2 adjusted for retinal ganglion cell displacement (GCIPLT4TestPoints) were performed every 3 months for 3 years. The tiem changes of the mean sensitivity over the entire field (VFmean) and the four central points (VF4TestPoints), cpRNFLT, and GCIPLT4TestPoints were analyzed using a linear mixed model. The aging-associated decline rates of VFmean and VF4TestPoins were 0.12 and 0.19 decibels/year (p<0.001), which significantly accelerated with increased subjects’ age (0.009 and 0.010 decibels/year, p<0.001, respectively) without changes in the ocular media. Those of the CpRNFLT and GCIPLT4TestPoints were not significant in both (p>0.114), but significantly accelerated with increased subjects’ age (0.021 and 0.010 mm/year, p=0.001 and 0.004, respectively). These results have implications in studying physiological aging- or desease-related changes in these parameters.


2021 ◽  
Author(s):  
Yasuaki Kamata ◽  
Naoto Hara ◽  
Tsukasa Satou ◽  
Takahiro Niida ◽  
Kazuo Mukuno

Abstract PurposeThe pathology of Parkinson's disease (PD) is suspected to affect the retina and choroid. We investigated changes in the retina and choroid of patients with PD using optical coherence tomography (OCT).MethodsWe examined 14 patients with PD and 22 patients without PD. Patients without PD had no ophthalmic pathology other than cataracts and neurodegenerative disorders. The retinal nerve fiber layer, ganglion cell layer + inner plexiform layer, and choroidal thickness were compared between both groups. Additionally, the choroidal image was divided into the choroid area, luminal area, and interstitial area using the binarization method, and the area of each region and the percentage of luminal area in the choroid area was analyzed. ResultsPatients with PD had a significantly thinner ganglion cell layer + inner plexiform layer compared to those without PD. The choroid area, luminal area, and interstitial area were significantly decreased in patients with PD compared to those without PD. Seven patients with PD who were successfully followed-up for 3 years showed decreased retinal nerve fiber layer and interstitial area after 3 years.ConclusionAutonomic nervous disorders and neurodegeneration in PD can cause thinning of the retina and choroid, as well as a reduction of the choroid area.


2016 ◽  
Vol 32 ◽  
pp. 9-15 ◽  
Author(s):  
M. Celik ◽  
A. Kalenderoglu ◽  
A. Sevgi Karadag ◽  
O. Bekir Egilmez ◽  
B. Han-Almis ◽  
...  

AbstractBackgroundOptic coherence tomography (OCT) is a new, contactless and fast neuroimaging method. Previous studies have observed thinning of the retinal nerve fibre layer (RNFL) in many neurodegenerative diseases, and researchers have suggested that correlations exist between the thinning of the RNFL and the neurodegeneration detected with other imaging methods or the severity of illness. More recently, OCT has been used in patients with schizophrenia. RNFL thinning has also been detected in these patients. With more sophisticated devices, segmentation of the retina and measurements of the ganglion cell layer (GCL) and internal plexiform layer (IPL) can be performed.MethodsWe measured the RNFL thickness and the GCL and IPL volumes in 40 treatment refractory patients with schizophrenia, 41 treatment responsive refractory patients and 41 controls using spectral-OCT, and we evaluated the correlations between the disease severity and OCT measurements.ResultsThe global RNFL thickness and GCL and IPL volumes were decreased in the patients with schizophrenia compared with the controls. In addition, the GCL and IPL volumes were lower in the treatment refractory patients with schizophrenia compared to the treatment responsive patients. Using parameters such as the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression (CGI) scores, the disease duration and number of hospitalizations, correlations between the GCL and IPL volumes and disease severity were stronger than the correlations between the RNFL and the disease parameters.ConclusionOur findings suggest that OCT can be used to detect neurodegeneration in schizophrenia and that the GCL and IPL volumes can also be used to monitor the progression of neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document