Finite energy and totally geodesic maps from locally symmetric spaces of finite volume

1996 ◽  
Vol 4 (5) ◽  
pp. 409-420
Author(s):  
J�rgen Jost ◽  
Jiayu Li
1989 ◽  
Vol 9 (1) ◽  
pp. 191-205 ◽  
Author(s):  
Dave Witte

AbstractM. Ratner's theorem on the rigidity of horocycle flows is extended to the rigidity of horospherical foliations on bundles over finite-volume locally-symmetric spaces of non-positive sectional curvature, and to other foliations of the same algebraic form.


2018 ◽  
Vol 70 (2) ◽  
pp. 675-687
Author(s):  
Benjamin Linowitz

Abstract Two number fields are said to be Brauer equivalent if there is an isomorphism between their Brauer groups that commutes with restriction. In this paper, we prove a variety of number theoretic results about Brauer equivalent number fields (for example, they must have the same signature). These results are then applied to the geometry of certain arithmetic locally symmetric spaces. As an example, we construct incommensurable arithmetic locally symmetric spaces containing exactly the same set of proper immersed totally geodesic surfaces.


2011 ◽  
Vol 151 (3) ◽  
pp. 421-440 ◽  
Author(s):  
JOACHIM SCHWERMER ◽  
CHRISTOPH WALDNER

AbstractWe study the cohomology of compact locally symmetric spaces attached to arithmetically defined subgroups of the real Lie group G = SU*(2n). Our focus is on constructing totally geodesic cycles which originate with reductive subgroups in G. We prove that these cycles, also called geometric cycles, are non-bounding. Thus this geometric construction yields non-vanishing (co)homology classes.In view of the interpretation of these cohomology groups in terms of automorphic forms, the existence of non-vanishing geometric cycles implies the existence of certain automorphic forms. In the case at hand, we substantiate this close relation between geometry and automorphic theory by discussing the classification of irreducible unitary representations of G with non-zero cohomology in some detail. This permits a comparison between geometric constructions and automorphic forms.


1988 ◽  
Vol 40 (1) ◽  
pp. 1-37 ◽  
Author(s):  
Stephen S. Kudla ◽  
John J. Millson

In this paper we continue our effort [11], [12], [13], [14] to interpret geometrically the harmonic forms on certain locally symmetric spaces constructed by using the theta correspondence. The point of this paper is to prove an integral formula, Theorem 2.1, which will allow us to generalize the results obtained in the above papers to the finite volume case (the previous papers treated only the compact case). We then apply our integral formula to certain finite volume quotients of symmetric spaces of orthogonal groups. The main result obtained is Theorem 4.2 which is described below. We let (,) denote the bilinear form associated to a quadratic form with integer coefficients of signature (p, q). We assume that the fundamental group Γ ⊂ SO(p, q) of our locally symmetric space is the subgroup of the integral isometries of (,) congruent to the identity matrix modulo some integer N. We assume that N is chosen large enough so that Γ is neat (the multiplicative subgroup of C* generated by the eigenvalues of the elements of Γ has no torsion), Borel [2], 17.1 and that every element in Γ has spinor norm 1, Millson-Raghunathan [15], Proposition 4.1. These conditions are needed to ensure that our cycles Cx (see below) are orientable. The methods we will use apply also to unitary and quaternion unitary locally symmetric spaces, see [13].


Sign in / Sign up

Export Citation Format

Share Document