Solution of the Ulam Stability Problem for an Euler Type Quadratic Functional Equation

2003 ◽  
Vol 26 (1) ◽  
pp. 101-112 ◽  
Author(s):  
John Michael Rassias
2018 ◽  
Vol 97 (3) ◽  
pp. 459-470 ◽  
Author(s):  
IZ-IDDINE EL-FASSI ◽  
JANUSZ BRZDĘK

Motivated by the notion of Ulam stability, we investigate some inequalities connected with the functional equation $$\begin{eqnarray}f(xy)+f(x\unicode[STIX]{x1D70E}(y))=2f(x)+h(y),\quad x,y\in G,\end{eqnarray}$$ for functions $f$ and $h$ mapping a semigroup $(G,\cdot )$ into a commutative semigroup $(E,+)$, where the map $\unicode[STIX]{x1D70E}:G\rightarrow G$ is an endomorphism of $G$ with $\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D70E}(x))=x$ for all $x\in G$. We derive from these results some characterisations of inner product spaces. We also obtain a description of solutions to the equation and hyperstability results for the $\unicode[STIX]{x1D70E}$-quadratic and $\unicode[STIX]{x1D70E}$-Drygas equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

We obtain the general solution of the generalized mixed additive and quadratic functional equationfx+my+fx−my=2fx−2m2fy+m2f2y,mis even;fx+y+fx−y−2m2−1fy+m2−1f2y,mis odd, for a positive integerm. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces whenmis an even positive integer orm=3.


2017 ◽  
pp. 5054-5061
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

In this paper, we investigate the stability problem in the spirit of Hyers-Ulam, Rassias and G·avruta for the quadratic functional equation:f(2x + y) + f(2x ¡ y) = 2f(x + y) + 2f(x ¡ y) + 4f(x) ¡ 2f(y) in 2-Banach spaces. These results extend the generalized Hyers-Ulam stability results by thequadratic functional equation in normed spaces to 2-Banach spaces.


2013 ◽  
Vol 373-375 ◽  
pp. 1881-1884
Author(s):  
Xiao Jing Zhan ◽  
Pei Sheng Ji

In this paper, we investigate the Hyers-Ulam stability of the functional equation ƒ(2x+y)+ƒ(2x-y)=8ƒ(x)+2ƒ(y) in fuzzy Banach space using the fixed point method.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

The quadratic reciprocal functional equation is introduced. The Ulam stability problem for anϵ-quadratic reciprocal mappingf:X→Ybetween nonzero real numbers is solved. The Găvruţa stability for the quadratic reciprocal functional equations is established as well.


2015 ◽  
Vol 92 (1) ◽  
pp. 77-93
Author(s):  
JAEYOUNG CHUNG ◽  
PRASANNA K. SAHOO

Let$G$be a commutative group and$\mathbb{C}$the field of complex numbers,$\mathbb{R}^{+}$the set of positive real numbers and$f,g,h,k:G\times \mathbb{R}^{+}\rightarrow \mathbb{C}$. In this paper, we first consider the Levi-Civitá functional inequality$$\begin{eqnarray}\displaystyle |f(x+y,t+s)-g(x,t)h(y,s)-k(y,s)|\leq {\rm\Phi}(t,s),\quad x,y\in G,t,s>0, & & \displaystyle \nonumber\end{eqnarray}$$where${\rm\Phi}:\mathbb{R}^{+}\times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}$is a symmetric decreasing function in the sense that${\rm\Phi}(t_{2},s_{2})\leq {\rm\Phi}(t_{1},s_{1})$for all$0<t_{1}\leq t_{2}$and$0<s_{1}\leq s_{2}$. As an application, we solve the Hyers–Ulam stability problem of the Levi-Civitá functional equation$$\begin{eqnarray}\displaystyle u\circ S-v\otimes w-k\circ {\rm\Pi}\in {\mathcal{D}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})\quad [\text{respectively}\;{\mathcal{A}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})] & & \displaystyle \nonumber\end{eqnarray}$$in the space of Gelfand hyperfunctions, where$u,v,w,k$are Gelfand hyperfunctions,$S(x,y)=x+y,{\rm\Pi}(x,y)=y,x,y\in \mathbb{R}^{n}$, and$\circ$,$\otimes$,${\mathcal{D}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})$and${\mathcal{A}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})$denote pullback, tensor product and the spaces of bounded distributions and bounded hyperfunctions, respectively.


Sign in / Sign up

Export Citation Format

Share Document