HEAT KERNEL METHOD FOR THE LEVI-CIVITÁ EQUATION IN DISTRIBUTIONS AND HYPERFUNCTIONS

2015 ◽  
Vol 92 (1) ◽  
pp. 77-93
Author(s):  
JAEYOUNG CHUNG ◽  
PRASANNA K. SAHOO

Let$G$be a commutative group and$\mathbb{C}$the field of complex numbers,$\mathbb{R}^{+}$the set of positive real numbers and$f,g,h,k:G\times \mathbb{R}^{+}\rightarrow \mathbb{C}$. In this paper, we first consider the Levi-Civitá functional inequality$$\begin{eqnarray}\displaystyle |f(x+y,t+s)-g(x,t)h(y,s)-k(y,s)|\leq {\rm\Phi}(t,s),\quad x,y\in G,t,s>0, & & \displaystyle \nonumber\end{eqnarray}$$where${\rm\Phi}:\mathbb{R}^{+}\times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}$is a symmetric decreasing function in the sense that${\rm\Phi}(t_{2},s_{2})\leq {\rm\Phi}(t_{1},s_{1})$for all$0<t_{1}\leq t_{2}$and$0<s_{1}\leq s_{2}$. As an application, we solve the Hyers–Ulam stability problem of the Levi-Civitá functional equation$$\begin{eqnarray}\displaystyle u\circ S-v\otimes w-k\circ {\rm\Pi}\in {\mathcal{D}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})\quad [\text{respectively}\;{\mathcal{A}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})] & & \displaystyle \nonumber\end{eqnarray}$$in the space of Gelfand hyperfunctions, where$u,v,w,k$are Gelfand hyperfunctions,$S(x,y)=x+y,{\rm\Pi}(x,y)=y,x,y\in \mathbb{R}^{n}$, and$\circ$,$\otimes$,${\mathcal{D}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})$and${\mathcal{A}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})$denote pullback, tensor product and the spaces of bounded distributions and bounded hyperfunctions, respectively.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

The quadratic reciprocal functional equation is introduced. The Ulam stability problem for anϵ-quadratic reciprocal mappingf:X→Ybetween nonzero real numbers is solved. The Găvruţa stability for the quadratic reciprocal functional equations is established as well.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Jaeyoung Chung ◽  
Chang-Kwon Choi ◽  
Jongjin Kim

LetSandGbe a commutative semigroup and a commutative group, respectively,CandR+the sets of complex numbers and nonnegative real numbers, respectively, andσ:S→Sorσ:G→Gan involution. In this paper, we first investigate general solutions of the functional equationf(x+σy)=f(x)g(y)-g(x)f(y)for allx,y∈S, wheref,g:S→C. We then prove the Hyers-Ulam stability of the functional equation; that is, we study the functional inequality|f(x+σy)-f(x)g(y)+g(x)f(y)|≤ψ(y)for allx,y∈G, wheref,g:G→Candψ:G→R+.


2020 ◽  
Vol 27 (4) ◽  
pp. 585-592
Author(s):  
Syed Abdul Mohiuddine ◽  
John Michael Rassias ◽  
Abdullah Alotaibi

AbstractThe “oldest quartic” functional equationf(x+2y)+f(x-2y)=4[f(x+y)+f(x-y)]-6f(x)+24f(y)was introduced and solved by the second author of this paper (see J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) 1999, 2, 243–252). Similarly, an interesting “quintic” functional equation was introduced and investigated by I. G. Cho, D. Kang and H. Koh, Stability problems of quintic mappings in quasi-β-normed spaces, J. Inequal. Appl. 2010 2010, Article ID 368981, in the following form:2f(2x+y)+2f(2x-y)+f(x+2y)+f(x-2y)=20[f(x+y)+f(x-y)]+90f(x).In this paper, we generalize this “Cho–Kang–Koh equation” by introducing pertinent Euler–Lagrange k-quintic functional equations, and investigate the “Ulam stability” of these new k-quintic functional mappings.


Author(s):  
A. Bodaghi ◽  
D. Kang ◽  
J.M. Rassias

AbstractIn this paper, we obtain the general solution of the following generalized mixed cubic and quartic functional equation f(x + kx) + f(x − ky) = k2{f(x + y) + f(x−y)}−2(k2−1)f(x)−2k2(k2−1)f(y)+ 1/4 k2(k2−1)f(2y), for fixed integers k with k ≠ 0,±1. The Hyers-Ulam stability problem for the mentioned functional equation is also proved.


2013 ◽  
Vol 11 (02) ◽  
pp. 1350010
Author(s):  
HORST ALZER

Let α and β be real numbers. We prove that the functional inequality [Formula: see text] holds for all positive real numbers x and y if and only if [Formula: see text] Here, γ denotes Euler's constant.


2018 ◽  
Vol 97 (3) ◽  
pp. 459-470 ◽  
Author(s):  
IZ-IDDINE EL-FASSI ◽  
JANUSZ BRZDĘK

Motivated by the notion of Ulam stability, we investigate some inequalities connected with the functional equation $$\begin{eqnarray}f(xy)+f(x\unicode[STIX]{x1D70E}(y))=2f(x)+h(y),\quad x,y\in G,\end{eqnarray}$$ for functions $f$ and $h$ mapping a semigroup $(G,\cdot )$ into a commutative semigroup $(E,+)$, where the map $\unicode[STIX]{x1D70E}:G\rightarrow G$ is an endomorphism of $G$ with $\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D70E}(x))=x$ for all $x\in G$. We derive from these results some characterisations of inner product spaces. We also obtain a description of solutions to the equation and hyperstability results for the $\unicode[STIX]{x1D70E}$-quadratic and $\unicode[STIX]{x1D70E}$-Drygas equations.


1969 ◽  
Vol 21 ◽  
pp. 1309-1318 ◽  
Author(s):  
James Stewart

Let G be an abelian group, written additively. A complexvalued function ƒ, defined on G, is said to be positive definite if the inequality1holds for every choice of complex numbers C1, …, cn and S1, …, sn in G. It follows directly from (1) that every positive definite function is bounded. Weil (9, p. 122) and Raïkov (5) proved that every continuous positive definite function on a locally compact abelian group is the Fourier-Stieltjes transform of a bounded positive measure, thus generalizing theorems of Herglotz (4) (G = Z, the integers) and Bochner (1) (G = R, the real numbers).If ƒ is a continuous function, then condition (1) is equivalent to the condition that2


Sign in / Sign up

Export Citation Format

Share Document