scholarly journals Eigenvalue condition numbers and pseudospectra of Fiedler matrices

CALCOLO ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 319-365 ◽  
Author(s):  
Fernando De Terán ◽  
Froilán M. Dopico ◽  
Javier Pérez
2011 ◽  
Vol 435 (9) ◽  
pp. 2193-2221 ◽  
Author(s):  
Bibhas Adhikari ◽  
Rafikul Alam ◽  
Daniel Kressner

2019 ◽  
Vol 564 ◽  
pp. 170-200 ◽  
Author(s):  
Luis Miguel Anguas ◽  
María Isabel Bueno ◽  
Froilán M. Dopico

2006 ◽  
Vol 28 (4) ◽  
pp. 1052-1068 ◽  
Author(s):  
Michael Karow ◽  
Daniel Kressner ◽  
Françoise Tisseur

2017 ◽  
Vol 50 (10) ◽  
pp. 105204 ◽  
Author(s):  
Serban Belinschi ◽  
Maciej A Nowak ◽  
Roland Speicher ◽  
Wojciech Tarnowski

Author(s):  
Yan V. Fyodorov ◽  
Wojciech Tarnowski

Abstract We study the distribution of the eigenvalue condition numbers $$\kappa _i=\sqrt{ ({\mathbf{l}}_i^* {\mathbf{l}}_i)({\mathbf{r}}_i^* {\mathbf{r}}_i)}$$ κ i = ( l i ∗ l i ) ( r i ∗ r i ) associated with real eigenvalues $$\lambda _i$$ λ i of partially asymmetric $$N\times N$$ N × N random matrices from the real Elliptic Gaussian ensemble. The large values of $$\kappa _i$$ κ i signal the non-orthogonality of the (bi-orthogonal) set of left $${\mathbf{l}}_i$$ l i and right $${\mathbf{r}}_i$$ r i eigenvectors and enhanced sensitivity of the associated eigenvalues against perturbations of the matrix entries. We derive the general finite N expression for the joint density function (JDF) $${{\mathcal {P}}}_N(z,t)$$ P N ( z , t ) of $$t=\kappa _i^2-1$$ t = κ i 2 - 1 and $$\lambda _i$$ λ i taking value z, and investigate its several scaling regimes in the limit $$N\rightarrow \infty $$ N → ∞ . When the degree of asymmetry is fixed as $$N\rightarrow \infty $$ N → ∞ , the number of real eigenvalues is $$\mathcal {O}(\sqrt{N})$$ O ( N ) , and in the bulk of the real spectrum $$t_i=\mathcal {O}(N)$$ t i = O ( N ) , while on approaching the spectral edges the non-orthogonality is weaker: $$t_i=\mathcal {O}(\sqrt{N})$$ t i = O ( N ) . In both cases the corresponding JDFs, after appropriate rescaling, coincide with those found in the earlier studied case of fully asymmetric (Ginibre) matrices. A different regime of weak asymmetry arises when a finite fraction of N eigenvalues remain real as $$N\rightarrow \infty $$ N → ∞ . In such a regime eigenvectors are weakly non-orthogonal, $$t=\mathcal {O}(1)$$ t = O ( 1 ) , and we derive the associated JDF, finding that the characteristic tail $${{\mathcal {P}}}(z,t)\sim t^{-2}$$ P ( z , t ) ∼ t - 2 survives for arbitrary weak asymmetry. As such, it is the most robust feature of the condition number density for real eigenvalues of asymmetric matrices.


2015 ◽  
Vol 18 (5) ◽  
pp. 1313-1335 ◽  
Author(s):  
Xiaoqiang Yue ◽  
Shi Shu ◽  
Xiao wen Xu ◽  
Zhiyang Zhou

AbstractThe paper aims to develop an effective preconditioner and conduct the convergence analysis of the corresponding preconditioned GMRES for the solution of discrete problems originating from multi-group radiation diffusion equations. We firstly investigate the performances of the most widely used preconditioners (ILU(k) and AMG) and their combinations (Bco and Bco), and provide drawbacks on their feasibilities. Secondly, we reveal the underlying complementarity of ILU(k) and AMG by analyzing the features suitable for AMG using more detailed measurements on multiscale nature of matrices and the effect of ILU(k) on multiscale nature. Moreover, we present an adaptive combined preconditioner Bcoα involving an improved ILU(0) along with its convergence constraints. Numerical results demonstrate that Bcoα-GMRES holds the best robustness and efficiency. At last, we analyze the convergence of GMRES with combined preconditioning which not only provides a persuasive support for our proposed algorithms, but also updates the existing estimation theory on condition numbers of combined preconditioned systems.


Sign in / Sign up

Export Citation Format

Share Document