gaussian ensemble
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Victor Godet ◽  
Charles Marteau

Abstract We study $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ gravity, a variant of the matterless Callan-Giddings-Harvey-Strominger model. We show that it describes a universal sector of the near horizon perturbations of non-extremal black holes in higher dimensions. In many respects this theory can be viewed as a flat space analog of Jackiw-Teitelboim gravity. The result for the Euclidean path integral implies that $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ is dual to a Gaussian ensemble that we describe in detail. The simplicity of this theory allows us to compute exact quantities such as the quenched free energy and provides a useful playground to study baby universes, averages and factorization. In particular we derive a “wormhole = diagonal” identity. We also give evidence for the existence of a non-perturbative completion in terms of a matrix model. Finally, flat wormhole solutions in this model are discussed.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 377
Author(s):  
Alexander Holevo

In this paper, we consider the classical capacity problem for Gaussian measurement channels. We establish Gaussianity of the average state of the optimal ensemble in the general case and discuss the Hypothesis of Gaussian Maximizers concerning the structure of the ensemble. Then, we consider the case of one mode in detail, including the dual problem of accessible information of a Gaussian ensemble. Our findings are relevant to practical situations in quantum communications where the receiver is Gaussian (say, a general-dyne detection) and concatenation of the Gaussian channel and the receiver can be considered as one Gaussian measurement channel. Our efforts in this and preceding papers are then aimed at establishing full Gaussianity of the optimal ensemble (usually taken as an assumption) in such schemes.


2020 ◽  
Vol 148 (12) ◽  
pp. 5087-5104
Author(s):  
Man-Yau Chan ◽  
Jeffrey L. Anderson ◽  
Xingchao Chen

AbstractThe introduction of infrared water vapor channel radiance ensemble data assimilation (DA) has improved numerical weather forecasting at operational centers. Further improvements might be possible through extending ensemble data assimilation methods to better assimilate infrared satellite radiances. Here, we will illustrate that ensemble statistics under clear-sky conditions are different from cloudy conditions. This difference suggests that extending the ensemble Kalman filter (EnKF) to handle bi-Gaussian prior distributions may yield better results than the standard EnKF. In this study, we propose a computationally efficient bi-Gaussian ensemble Kalman filter (BGEnKF) to handle bi-Gaussian prior distributions. As a proof-of-concept, we used the 40-variable Lorenz 1996 model as a proxy to examine the impacts of assimilating infrared radiances with the BGEnKF and EnKF. A nonlinear observation operator that constructs radiance-like bimodal ensemble statistics was used to generate and assimilate pseudoradiances. Inflation was required for both methods to effectively assimilate pseudoradiances. In both 800- and 20-member experiments, the BGEnKF generally outperformed the EnKF. The relative performance of the BGEnKF with respect to the EnKF improved when the observation spacing and time between DA cycles (cycling interval) are increased from small values. The relative performance then degraded when observation spacing and cycling interval become sufficiently large. The BGEnKF generated less noise than the EnKF, suggesting that the BGEnKF produces more balanced analysis states than the EnKF. This proof-of-concept study motivates future investigation into using the BGEnKF to assimilate infrared observations into high-order numerical weather models.


Author(s):  
Yan V. Fyodorov ◽  
Wojciech Tarnowski

Abstract We study the distribution of the eigenvalue condition numbers $$\kappa _i=\sqrt{ ({\mathbf{l}}_i^* {\mathbf{l}}_i)({\mathbf{r}}_i^* {\mathbf{r}}_i)}$$ κ i = ( l i ∗ l i ) ( r i ∗ r i ) associated with real eigenvalues $$\lambda _i$$ λ i of partially asymmetric $$N\times N$$ N × N random matrices from the real Elliptic Gaussian ensemble. The large values of $$\kappa _i$$ κ i signal the non-orthogonality of the (bi-orthogonal) set of left $${\mathbf{l}}_i$$ l i and right $${\mathbf{r}}_i$$ r i eigenvectors and enhanced sensitivity of the associated eigenvalues against perturbations of the matrix entries. We derive the general finite N expression for the joint density function (JDF) $${{\mathcal {P}}}_N(z,t)$$ P N ( z , t ) of $$t=\kappa _i^2-1$$ t = κ i 2 - 1 and $$\lambda _i$$ λ i taking value z, and investigate its several scaling regimes in the limit $$N\rightarrow \infty $$ N → ∞ . When the degree of asymmetry is fixed as $$N\rightarrow \infty $$ N → ∞ , the number of real eigenvalues is $$\mathcal {O}(\sqrt{N})$$ O ( N ) , and in the bulk of the real spectrum $$t_i=\mathcal {O}(N)$$ t i = O ( N ) , while on approaching the spectral edges the non-orthogonality is weaker: $$t_i=\mathcal {O}(\sqrt{N})$$ t i = O ( N ) . In both cases the corresponding JDFs, after appropriate rescaling, coincide with those found in the earlier studied case of fully asymmetric (Ginibre) matrices. A different regime of weak asymmetry arises when a finite fraction of N eigenvalues remain real as $$N\rightarrow \infty $$ N → ∞ . In such a regime eigenvectors are weakly non-orthogonal, $$t=\mathcal {O}(1)$$ t = O ( 1 ) , and we derive the associated JDF, finding that the characteristic tail $${{\mathcal {P}}}(z,t)\sim t^{-2}$$ P ( z , t ) ∼ t - 2 survives for arbitrary weak asymmetry. As such, it is the most robust feature of the condition number density for real eigenvalues of asymmetric matrices.


Author(s):  
Zhenisbek Assylbekov ◽  
Rustem Takhanov

This paper takes a step towards the theoretical analysis of the relationship between word embeddings and context embeddings in models such as word2vec. We start from basic probabilistic assumptions on the nature of word vectors, context vectors, and text generation. These assumptions are supported either empirically or theoretically by the existing literature. Next, we show that under these assumptions the widely-used word-word PMI matrix is approximately a random symmetric Gaussian ensemble. This, in turn, implies that context vectors are reflections of word vectors in approximately half the dimensions. As a direct application of our result, we suggest a theoretically grounded way of tying weights in the SGNS model.


2019 ◽  
Vol 66 ◽  
pp. 225-242 ◽  
Author(s):  
Zhenisbek Assylbekov ◽  
Rustem Takhanov

This paper takes a step towards theoretical analysis of the relationship between word embeddings and context embeddings in models such as word2vec. We start from basic probabilistic assumptions on the nature of word vectors, context vectors, and text generation. These assumptions are supported either empirically or theoretically by the existing literature. Next, we show that under these assumptions the widely-used word-word PMI matrix is approximately a random symmetric Gaussian ensemble. This, in turn, implies that context vectors are reflections of word vectors in approximately half the dimensions. As a direct application of our result, we suggest a theoretically grounded way of tying weights in the SGNS model.


Author(s):  
Edouard Brezin ◽  
Sinobu Hikami

This article deals with beta ensembles. Classical random matrix ensembles contain a parameter β, taking on the values 1, 2, and 4. This parameter, which relates to the underlying symmetry, appears as a repulsion sβ between neighbouring eigenvalues for small s. β may be regarded as a continuous positive parameter on the basis of different viewpoints of the eigenvalue probability density function for the classical random matrix ensembles - as the Boltzmann factor for a log-gas or the squared ground state wave function of a quantum many-body system. The article first considers log-gas systems before discussing the Fokker-Planck equation and the Calogero-Sutherland system. It then describes the random matrix realization of the β-generalization of the circular ensemble and concludes with an analysis of stochastic differential equations resulting from the case of the bulk scaling limit of the β-generalization of the Gaussian ensemble.


2017 ◽  
Vol 381 ◽  
pp. 107-120 ◽  
Author(s):  
Hyungwon Kim ◽  
Anatoli Polkovnikov ◽  
Emil A. Yuzbashyan

Sign in / Sign up

Export Citation Format

Share Document