scholarly journals Exploiting Sparsity for Semi-Algebraic Set Volume Computation

Author(s):  
Matteo Tacchi ◽  
Tillmann Weisser ◽  
Jean Bernard Lasserre ◽  
Didier Henrion
1994 ◽  
Vol 1 (3) ◽  
pp. 277-286
Author(s):  
G. Khimshiashvili

Abstract It is shown that the cardinality of a finite semi-algebraic subset over a real closed field can be computed in terms of signatures of effectively constructed quadratic forms.


2011 ◽  
Vol 215 (8) ◽  
pp. 1844-1851 ◽  
Author(s):  
Daniel J. Bates ◽  
Chris Peterson ◽  
Andrew J. Sommese ◽  
Charles W. Wampler

2009 ◽  
Vol 52 (2) ◽  
pp. 224-236
Author(s):  
Riccardo Ghiloni

AbstractLetRbe a real closed field, letX⊂Rnbe an irreducible real algebraic set and letZbe an algebraic subset ofXof codimension ≥ 2. Dubois and Efroymson proved the existence of an irreducible algebraic subset ofXof codimension 1 containingZ. We improve this dimension theorem as follows. Indicate by μ the minimum integer such that the ideal of polynomials inR[x1, … ,xn] vanishing onZcan be generated by polynomials of degree ≤ μ. We prove the following two results: (1) There exists a polynomialP∈R[x1, … ,xn] of degree≤ μ+1 such thatX∩P–1(0) is an irreducible algebraic subset ofXof codimension 1 containingZ. (2) LetFbe a polynomial inR[x1, … ,xn] of degreedvanishing onZ. Suppose there exists a nonsingular pointxofXsuch thatF(x) = 0 and the differential atxof the restriction ofFtoXis nonzero. Then there exists a polynomialG∈R[x1, … ,xn] of degree ≤ max﹛d, μ + 1﹜ such that, for eacht∈ (–1, 1) \ ﹛0﹜, the set ﹛x∈X|F(x) +tG(x) = 0﹜ is an irreducible algebraic subset ofXof codimension 1 containingZ. Result (1) and a slightly different version of result (2) are valid over any algebraically closed field also.


1992 ◽  
Vol 44 (6) ◽  
pp. 1262-1271 ◽  
Author(s):  
Murray Marshall

AbstractThe results obtained extend Madden’s result for Dedekind domains to more general types of 1-dimensional Noetherian rings. In particular, these results apply to piecewise polynomial functions t:C → R where R is a real closed field and C ⊆ Rn is a closed 1-dimensional semi-algebraic set, and also to the associated “relative” case where t, C are defined over some subfield K ⊆ R.


Sign in / Sign up

Export Citation Format

Share Document