real closed field
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Wojciech Kucharz ◽  
Krzysztof Kurdyka

Abstract Let $X$ be a quasi-projective algebraic variety over a real closed field $R$, and let $f \colon U \to R$ be a function defined on an open subset $U$ of the set $X(R)$ of $R$-rational points of $X$. Assume that either the function $f$ is locally semialgebraic or the field $R$ is uncountable. If for every irreducible algebraic curve $C \subset X$ the restriction $f|_{U \cap C}$ is continuous and admits a rational representation, then $f$ is continuous and admits a rational representation. There are also suitable versions of this theorem with algebraic curves replaced by algebraic arcs. Heretofore, results of such a type have been known only for $R={\mathbb{R}}$. The transition from ${\mathbb{R}}$ to $R$ is not automatic at all and requires new methods.


Author(s):  
Teresa Crespo ◽  
◽  
Zbigniew Hajto ◽  
Rouzbeh Mohseni ◽  
◽  
...  

In this paper, we establish Galois theory for partial differential systems defined over formally real differential fields with a real closed field of constants and over formally p-adic differential fields with a p-adically closed field of constants. For an integrable partial differential system defined over such a field, we prove that there exists a formally real (resp. formally p-adic) Picard-Vessiot extension. Moreover, we obtain a uniqueness result for this Picard-Vessiot extension. We give an adequate definition of the Galois differential group and obtain a Galois fundamental theorem in this setting. We apply the obtained Galois correspondence to characterise formally real Liouvillian extensions of real partial differential fields with a real closed field of constants by means of split solvable linear algebraic groups. We present some examples of real dynamical systems and indicate some possibilities of further development of algebraic methods in real dynamical systems.


2021 ◽  
Vol 13 ◽  
Author(s):  
Merlin Carl ◽  
Lothar Sebastian Krapp

Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementarily equivalent to the real numbers with exponentiation and that each model of Peano arithmetic is an integer part of a real closed field that admits an isomorphism between its ordered additive and its ordered multiplicative group of positive elements. Under the assumption of Schanuel’s Conjecture, we obtain further strengthenings for the last statement.


2019 ◽  
Vol 20 (02) ◽  
pp. 2050009
Author(s):  
Elías Baro ◽  
Pantelis E. Eleftheriou ◽  
Ya’acov Peterzil

We prove the following instance of a conjecture stated in [P. E. Eleftheriou and Y. Peterzil, Definable quotients of locally definable groups, Selecta Math. (N.S.) 18(4) (2012) 885–903]. Let [Formula: see text] be an abelian semialgebraic group over a real closed field [Formula: see text] and let [Formula: see text] be a semialgebraic subset of [Formula: see text]. Then the group generated by [Formula: see text] contains a generic set and, if connected, it is divisible. More generally, the same result holds when [Formula: see text] is definable in any o-minimal expansion of [Formula: see text] which is elementarily equivalent to [Formula: see text]. We observe that the above statement is equivalent to saying: there exists an [Formula: see text] such that [Formula: see text] is an approximate subgroup of [Formula: see text].


2016 ◽  
Vol 81 (3) ◽  
pp. 1115-1123
Author(s):  
G. IGUSA ◽  
J. F. KNIGHT

AbstractSchweber [10] defined a reducibility that allows us to compare the computing power of structures of arbitrary cardinality. Here we focus on the ordered field ${\cal R}$ of real numbers and a structure ${\cal W}$ that just codes the subsets of ω. In [10], it was observed that ${\cal W}$ is reducible to ${\cal R}$. We prove that ${\cal R}$ is not reducible to ${\cal W}$. As part of the proof, we show that for a countable recursively saturated real closed field ${\cal P}$ with residue field k, some copy of ${\cal P}$ does not compute a copy of k.


2015 ◽  
Vol 80 (1) ◽  
pp. 194-206 ◽  
Author(s):  
PAOLA D’AQUINO ◽  
SALMA KUHLMANN ◽  
KAREN LANGE

AbstractWe give a valuation theoretic characterization for a real closed field to be recursively saturated. This builds on work in [9], where the authors gave such a characterization for κ-saturation, for a cardinal $\kappa \ge \aleph _0 $. Our result extends the characterization of Harnik and Ressayre [7] for a divisible ordered abelian group to be recursively saturated.


2014 ◽  
Vol 215 ◽  
pp. 225-237
Author(s):  
Serge Randriambololona

AbstractThis article presents two constructions motivated by a conjecture of van den Dries and Miller concerning the restricted analytic field with exponentiation. The first construction provides an example of two o-minimal expansions of a real closed field that possess the same field of germs at infinity of one-variable functions and yet define different global one-variable functions. The second construction gives an example of a family of infinitely many distinct maximal polynomially bounded reducts (all this in the sense of definability) of the restricted analytic field with exponentiation.


Sign in / Sign up

Export Citation Format

Share Document