scholarly journals Abelian surfaces over totally real fields are potentially modular

Author(s):  
George Boxer ◽  
Frank Calegari ◽  
Toby Gee ◽  
Vincent Pilloni

AbstractWe show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces $A$ A over ${\mathbf {Q}}$ Q with $\operatorname{End}_{ {\mathbf {C}}}A={\mathbf {Z}}$ End C A = Z . We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.

2007 ◽  
Vol 59 (2) ◽  
pp. 372-392 ◽  
Author(s):  
Daniel Maisner ◽  
Enric Nart

AbstractWe determine which isogeny classes of supersingular abelian surfaces over a finite field k of characteristic 2 contain jacobians. We deal with this problem in a direct way by computing explicitly the zeta function of all supersingular curves of genus 2. Our procedure is constructive, so that we are able to exhibit curves with prescribed zeta function and find formulas for the number of curves, up to k-isomorphism, leading to the same zeta function.


1998 ◽  
Vol 41 (2) ◽  
pp. 158-165 ◽  
Author(s):  
István Gaál

AbstractIn the present paper we consider the problem of finding power integral bases in number fields which are composits of two subfields with coprime discriminants. Especially, we consider imaginary quadratic extensions of totally real cyclic number fields of prime degree. As an example we solve the index form equation completely in a two parametric family of fields of degree 10 of this type.


Sign in / Sign up

Export Citation Format

Share Document