scholarly journals List Edge Coloring of Outer-1-planar Graphs

2020 ◽  
Vol 36 (3) ◽  
pp. 737-752
Author(s):  
Xin Zhang
2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Marthe Bonamy ◽  
Benjamin Lévêque ◽  
Alexandre Pinlou

International audience For planar graphs, we consider the problems of <i>list edge coloring</i> and <i>list total coloring</i>. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are adjacent, or a vertex and an edge that are incident receive different colors. In their list extensions, instead of having the same set of colors for the whole graph, every vertex or edge is assigned some set of colors and has to be colored from it. A graph is minimally edge or total choosable if it is list $\Delta$-edge-colorable or list $(\Delta +1)$-total-colorable, respectively, where $\Delta$ is the maximum degree in the graph. It is already known that planar graphs with $\Delta \geq 8$ and no triangle adjacent to a $C_4$ are minimally edge and total choosable (Li Xu 2011), and that planar graphs with $\Delta \geq 7$ and no triangle sharing a vertex with a $C_4$ or no triangle adjacent to a $C_k (\forall 3 \leq k \leq 6)$ are minimally total colorable (Wang Wu 2011). We strengthen here these results and prove that planar graphs with $\Delta \geq 7$ and no triangle adjacent to a $C_4$ are minimally edge and total choosable.


2021 ◽  
Vol 41 (1) ◽  
pp. 199
Author(s):  
Linna Hu ◽  
Lei Sun ◽  
Jian-Liang Wu

Author(s):  
Qiaojun Shu ◽  
Yong Chen ◽  
Shuguang Han ◽  
Guohui Lin ◽  
Eiji Miyano ◽  
...  

2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


2020 ◽  
Vol 36 (3) ◽  
pp. 581-589
Author(s):  
Wen-yao Song ◽  
Yuan-yuan Duan ◽  
Juan Wang ◽  
Lian-ying Miao

Sign in / Sign up

Export Citation Format

Share Document