Journal of Combinatorial Optimization
Latest Publications


TOTAL DOCUMENTS

1957
(FIVE YEARS 462)

H-INDEX

36
(FIVE YEARS 5)

Published By Springer-Verlag

1573-2886, 1382-6905

Author(s):  
Jia-Xiong Dan ◽  
Zhi-Bo Zhu ◽  
Xin-Kui Yang ◽  
Ru-Yi Li ◽  
Wei-Jie Zhao ◽  
...  
Keyword(s):  

Author(s):  
Nicolas Boutry ◽  
Rocio Gonzalez-Diaz ◽  
Maria-Jose Jimenez ◽  
Eduardo Paluzo-Hildago

AbstractIn this paper, we define a new flavour of well-composedness, called strong Euler well-composedness. In the general setting of regular cell complexes, a regular cell complex of dimension n is strongly Euler well-composed if the Euler characteristic of the link of each boundary cell is 1, which is the Euler characteristic of an $$(n-1)$$ ( n - 1 ) -dimensional ball. Working in the particular setting of cubical complexes canonically associated with $$n$$ n D pictures, we formally prove in this paper that strong Euler well-composedness implies digital well-composedness in any dimension $$n\ge 2$$ n ≥ 2 and that the converse is not true when $$n\ge 4$$ n ≥ 4 .


Author(s):  
Dávid Szeszlér

AbstractGreedy algorithms are among the most elementary ones in theoretical computer science and understanding the conditions under which they yield an optimum solution is a widely studied problem. Greedoids were introduced by Korte and Lovász at the beginning of the 1980s as a generalization of matroids. One of the basic motivations of the notion was to extend the theoretical background behind greedy algorithms beyond the well-known results on matroids. Indeed, many well-known algorithms of a greedy nature that cannot be interpreted in a matroid-theoretical context are special cases of the greedy algorithm on greedoids. Although this algorithm turns out to be optimal in surprisingly many cases, no general theorem is known that explains this phenomenon in all these cases. Furthermore, certain claims regarding this question that were made in the original works of Korte and Lovász turned out to be false only most recently. The aim of this paper is to revisit and straighten out this question: we summarize recent progress and we also prove new results in this field. In particular, we generalize a result of Korte and Lovász and thus we obtain a sufficient condition for the optimality of the greedy algorithm that covers a much wider range of known applications than the original one.


Sign in / Sign up

Export Citation Format

Share Document