Does body size influence nest attendance? A comparison of Ross’s geese (Chen rossii) and the larger, sympatric lesser snow geese (C. caerulescens caerulescens)

2007 ◽  
Vol 148 (4) ◽  
pp. 549-555 ◽  
Author(s):  
Jón Einar Jónsson ◽  
Alan D. Afton ◽  
Ray T. Alisauskas
2008 ◽  
Vol 122 (1) ◽  
pp. 34
Author(s):  
Richard H. Kerbes ◽  
Katherine M. Meeres ◽  
James E. Hines ◽  
David G. Kay

We surveyed the Lesser Snow (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii) of Jenny Lind Island, Nunavut, using aerial photography in June 1988, 1998, and 2006, and a visual helicopter transect survey in July 1990. The estimated number of nesting geese was 39 154 ± SE 2238 in 1988, 19 253 ± 2323 in 1998, and 21 572 ± 1898 in 2006. In 1988 an estimated 2.7% of the nesting geese were Ross’s. The July 1990 population of adult-plumaged birds was 25 020 ± 3114. The estimated percentage blue morph among Snow and Ross’s geese was 19.0% in 1988, 25.1% in 1989, 23.0% in 1990 and 21.1% in 2006. Estimated pre-fledged Snow Goose productivity was 47% young in 1989 and 46% in 1990. Combined numbers of Snow and Ross’s geese on Jenny Lind Island grew over 250 fold, from 210 adults in 1962-1966 to 54 100 adults in 1985. Numbers subsequently declined, to 42 200 in 1988, 25 000 in 1990, 20 300 in 1998, and 26 400 in 2006. Population decline between 1985 and 1990 was consistent with anecdotal reports by others that die-offs of Snow Geese occurred in 1984, 1985 and 1989, and with our August 1989 fieldwork which found evidence of habitat degradation and malnourishment of young geese. In spite of limited food resources on Jenny Lind Island, the colony continued to exist in 2006 at near its 1990 and 1998 levels. Further studies there could provide insights for management of the overabundant mid-continent Snow Goose population and its arctic habitats.


The Auk ◽  
1999 ◽  
Vol 116 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Mark L. Gloutney ◽  
Ray T. Alisauskas ◽  
Keith A. Hobson ◽  
Alan D. Afton

The Condor ◽  
2002 ◽  
Vol 104 (2) ◽  
pp. 432-436 ◽  
Author(s):  
Jason D. Weckstein ◽  
Alan D. Afton ◽  
Robert M. Zink ◽  
Ray T. Alisauskas

AbstractWe reanalyzed Quinn's (1992) mtDNA control region data set including new sequences from nine Lesser Snow Geese (Chen caerulescens caerulescens) and 10 Ross's Geese (Chen rossi) and found the same divergent lineages that Quinn (1992) attributed to vicariant separation of Lesser Snow Goose populations during the Pleistocene. However, peculiar patterns of mtDNA control region sequence variation, including a multimodal mismatch distribution of mtDNA sequences with two levels of population structuring and the sharing of two divergent haplotype lineages, are consistent with two hybridization episodes in Chen geese. Comparisons of mtDNA variation with historical and allozyme data sets compiled by Cooke et al. (1988) are consistent with the hypothesis that sharing of two mtDNA haplotype lineages between Ross's Goose and Lesser Snow Goose resulted from hybridization (Avise et al. 1992). Furthermore, population structure found within one haplotype cluster is consistent with Cooke et al.‘s (1988) hypothesis of past allopatry between blue and white Lesser Snow Geese.Hibridización y Subdivisión dentro y entre Poblaciones de Chen rossi y Chen caerulescens caerulescens: Una Perspectiva MolecularResumen. Reanalizamos los datos de la región de control del ADN mitocondrial (ADNmt) de Quinn (1992), junto con nuevas secuencias de nueve individuos de la especie Chen caerulescens caerulescens y 10 de Chen rossi. Encontramos los mismos linajes divergentes que Quinn (1992) atribuyó a la separación vicariante de las poblaciones de C. c. caerulescens durante el Pleistoceno. Sin embargo, encontramos que las dos especies comparten dos linajes de haplotipos divergentes, y la distribución de “mismatch” en secuencias del ADNmt mostró multimodalidad con dos niveles de estructuración de la población. Estos patrones peculiares están de acuerdo con la hipótesis de que hubo dos episodios de hibridización en gansos del género Chen. Los datos históricos y de aloenzimas compilados por Cooke et al. (1988) también apoyan esta hipótesis (Avise et al. 1992). Además, la estructura de la población dentro de un grupo de haplotipos es consistente con la hipótesis de Cooke et al. (1988) acerca de la pasada alopatría entre los morfos azul y blanco de C. c. caerulescens.


2006 ◽  
Vol 176 (5) ◽  
pp. 453-462 ◽  
Author(s):  
Jón Einar Jónsson ◽  
Alan D. Afton ◽  
Dominique G. Homberger ◽  
William G. Henk ◽  
Ray T. Alisauskas

The Auk ◽  
2001 ◽  
Vol 118 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Shannon S. Badzinski ◽  
C. Davison Ankney ◽  
James O. Leafloor ◽  
Kenneth F. Abraham

AbstractWe collected eggs, neonates, and adults of Canada Geese (Branta canadensis interior) and Lesser Snow Geese (Chen caerulescens caerulescens) from Akimiski Island, Nunavut, during the 1996 breeding season. This was done to assess interspecific differences in egg composition, egg-nutrient catabolism, developmental maturity, tissue maturity, and body reserves, and to relate observed differences in those variables to ecological conditions historically experienced by Canada Geese and Lesser Snow Geese. Eggs of both species had identical proportional compositions, but Canada Goose embryos catabolized 13% more of their egg protein, whereas Lesser Snow Goose embryos catabolized 9% more of their egg lipid. Neonate Canada Geese and Lesser Snow Geese had similar protein reserves, relative to body size, but Lesser Snow Geese had relatively smaller lipid reserves than did Canada Geese. Relative to conspecific adults, Lesser Snow Goose goslings generally were structurally larger at hatch than were Canada Goose goslings. Neonate Lesser Snow Geese had more developmentally mature keels, wings, and breast muscles, and larger gizzards and caeca for their body size, than did neonate Canada Geese. Despite hatching from smaller eggs and having a shorter period of embryonic growth, skeletal muscles and gizzard tissues of Lesser Snow Geese were more functionally mature than those of Canada Geese. Increased lipid use during embryonic development could account for how Lesser Snow Geese hatched in a more developmentally and functionally mature state. In turn, differences in developmental and functional maturity of Lesser Snow Geese, as compared to Canada Geese, likely are adaptations that offset metabolic costs associated with their small body size, or to selection pressures associated with high arctic environmental conditions and colonial nesting and brood rearing.


The Auk ◽  
1997 ◽  
Vol 114 (4) ◽  
pp. 610-618 ◽  
Author(s):  
Kevin G. McCracken ◽  
Alan D. Afton ◽  
Ray T. Alisauskas

The Auk ◽  
1988 ◽  
Vol 105 (4) ◽  
pp. 639-648 ◽  
Author(s):  
J. Chris Davies ◽  
R. F. Rockwell ◽  
Fred Cooke

Abstract We examined the potential action of selection on body size in a population of Lesser Snow Geese (Chen caerulescens caerulescens) breeding in the Canadian subarctic. We evaluated the genetic basis of phenotypic variation in body size and examined the association of body size and components of fitness related to fecundity and viability. There was a heritable component to body size in this population derived in part from the action of additive genes. There was no relation between adult body size and the number of eggs laid, the number of eggs surviving predation, the number of goslings that left the nest, or the number of goslings fledged. Small birds entered the breeding population at a younger age. They did so with no reduction in viability and may actually live longer than large birds. The heritable variation in body size combined with the directional selection gradient should lead to a gradual reduction in adult body size in this population. We found no evidence for such a change over 5 generations. We discuss this in terms of additional fitness components, the retarding effects of age structure on the response to selection, and the interaction of selection and gene flow.


2015 ◽  
Vol 93 (8) ◽  
pp. 671-675 ◽  
Author(s):  
S.A. Elmore ◽  
G. Samelius ◽  
C. Fernando ◽  
R.T. Alisauskas ◽  
E.J. Jenkins

It is currently unclear how Toxoplasma gondii (Nicolle and Manceaux, 1908) persists in arctic tundra ecosystems in the absence of felid definitive hosts. To investigate potential transmission routes of T. gondii in a terrestrial arctic food web, we collected samples from two migratory herbivores, Ross’s Geese (Chen rossi (Cassin, 1861)) and Lesser Snow Geese (Chen caerulescens (L., 1758)), and from two resident herbivores, Nearctic brown lemmings (Lemmus trimucronatus (Richardson, 1825)) and collared lemmings (Dicrostonyx groenlandicus (Traill, 1823)), trapped at Karrak Lake, Nunavut, Canada. Antibodies were detected in 76 of 234 (32.4%) serum samples from Ross’s Geese and 66 of 233 (28.3%) serum samples from Lesser Snow Geese. We did not detect T. gondii antibodies in filter-paper eluate tested from thoracic fluid samples collected from 84 lemmings. We did not detect T. gondii DNA in brain tissue from these lemmings. Although a small sample size, our findings suggest that lemmings in this terrestrial arctic ecosystem are not exposed to, or infected with, the parasite. This suggests that oocysts are not introduced into the terrestrial arctic ecosystem at Karrak Lake via freshwater runoff from temperate regions. This study demonstrated that live adult arctic-nesting geese are exposed to T. gondii and therefore migratory herbivorous hosts are potential sources of T. gondii infection for predators in terrestrial arctic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document