high arctic
Recently Published Documents


TOTAL DOCUMENTS

3064
(FIVE YEARS 590)

H-INDEX

89
(FIVE YEARS 10)

Geoderma ◽  
2022 ◽  
Vol 408 ◽  
pp. 115591
Author(s):  
Wojciech Szymański ◽  
Marek Drewnik ◽  
Mateusz Stolarczyk ◽  
Łukasz Musielok ◽  
Magdalena Gus-Stolarczyk ◽  
...  
Keyword(s):  

Polar Biology ◽  
2022 ◽  
Author(s):  
Elena Golikova ◽  
Sergei Korsun ◽  
Ivan Voltski ◽  
Marina Varfolomeeva ◽  
Andrei Granovitch
Keyword(s):  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Magnani ◽  
Ilaria Baneschi ◽  
Mariasilvia Giamberini ◽  
Brunella Raco ◽  
Antonello Provenzale

AbstractHigh-Arctic ecosystems are strongly affected by climate change, and it is still unclear whether they will become a carbon source or sink in the next few decades. In turn, such knowledge gaps on the drivers and the processes controlling CO2 fluxes and storage make future projections of the Arctic carbon budget a challenging goal. During summer 2019, we extensively measured CO2 fluxes at the soil–vegetation–atmosphere interface, together with basic meteoclimatic variables and ecological characteristics in the Bayelva river basin near Ny Ålesund, Spitzbergen, Svalbard (NO). By means of multi-regression models, we identified the main small-scale drivers of CO2 emission (Ecosystem Respiration, ER), and uptake (Gross Primary Production, GPP) in this tundra biome, showing that (i) at point scale, the temporal variability of fluxes is controlled by the classical drivers, i.e. air temperature and solar irradiance respectively for ER and GPP, (ii) at site scale, the heterogeneity of fractional vegetation cover, soil moisture and vegetation type acted as additional source of variability for both CO2 emissions and uptake. The assessment of the relative importance of such drivers in the multi-regression model contributes to a better understanding of the terrestrial carbon dioxide exchanges and of Critical Zone processes in the Arctic tundra.


2022 ◽  
Vol 14 (2) ◽  
pp. 313
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Giovanni Muscari ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

Boreal fires have increased during the last years and are projected to become more intense and frequent as a consequence of climate change. Wildfires produce a wide range of effects on the Arctic climate and ecosystem, and understanding these effects is crucial for predicting the future evolution of the Arctic region. This study focuses on the impact of the long-range transport of biomass-burning aerosol into the atmosphere and the corresponding radiative perturbation in the shortwave frequency range. As a case study, we investigate an intense biomass-burning (BB) event which took place in summer 2017 in Canada and subsequent northeastward transport of gases and particles in the plume leading to exceptionally high values (0.86) of Aerosol Optical Depth (AOD) at 500 nm measured in northwestern Greenland on 21 August 2017. This work characterizes the BB plume measured at the Thule High Arctic Atmospheric Observatory (THAAO; 76.53∘N, 68.74∘W) in August 2017 by assessing the associated shortwave aerosol direct radiative impact over the THAAO and extending this evaluation over the broader region (60∘N–80∘N, 110∘W–0∘E). The radiative transfer simulations with MODTRAN6.0 estimated an aerosol heating rate of up to 0.5 K/day in the upper aerosol layer (8–12 km). The direct aerosol radiative effect (ARE) vertical profile shows a maximum negative value of −45.4 Wm−2 for a 78∘ solar zenith angle above THAAO at 3 km altitude. A cumulative surface ARE of −127.5 TW is estimated to have occurred on 21 August 2017 over a portion (∼3.1×106 km2) of the considered domain (60∘N–80∘N, 110∘W–0∘E). ARE regional mean daily values over the same portion of the domain vary between −65 and −25 Wm−2. Although this is a limited temporal event, this effect can have significant influence on the Arctic radiative budget, especially in the anticipated scenario of increasing wildfires.


2022 ◽  
Author(s):  
Iwo Wieczorek ◽  
Mateusz Czesław Strzelecki ◽  
Łukasz Stachnik ◽  
Jacob Clement Yde ◽  
Jakub Małecki

Abstract. Rapid changes of glacial lakes are among the most visible indicators of global warming in glacierized areas around the world. The general trend is that the area and number of glacial lakes increase significantly in high mountain areas and polar latitudes. However, there is a lack of knowledge about the current state of glacial lakes in the High Arctic. This study aims to address this issue by providing the first glacial lake inventory from Svalbard, with focus on the genesis and evolution of glacial lakes since the end of the Little Ice Age. We use aerial photographs and topographic data from 1936 to 2012 and satellite imagery from 2013 to 2020. The inventory includes the development of 566 glacial lakes (total area of 145.91 km2) that were in direct contact with glaciers in 2008–2012. From the 1990s to the end of the 2000s, the total glacial lake area increased by nearly a factor of six. A decrease in the number of lakes between 2012 and 2020 is related to two main processes: the drainage of 197 lakes and the merger of smaller reservoirs into larger ones. The changes of glacial lakes show how climate change in the High Arctic affect proglacial geomorphology by enhanced formation of glacial lakes, leading to higher risks associated with glacier lake outburst floods in Svalbard.


Author(s):  
Ji-Yeon Cheon ◽  
Hyunjoon Cho ◽  
Mincheol Kim ◽  
Hyun Je Park ◽  
Tae-Yoon Park ◽  
...  

Gut microbiome is vertically transmitted by maternal lactation at birth in mammals. In this study, we investigated the gut microbiome and diet compositions of muskox, a large herbivore in the high Arctic. From muskox feces in Ella Island, East Greenland, we compared the microbiota composition using bacterial 16S rRNA gene sequencing and the dietary compositions of six female adults and four calves have been compared. Firmicutes was the most abundant bacterial phylum in both adults and calves, comprising 94.36% and 94.03%, respectively. There were significant differences in the relative abundance of two Firmicutes families: the adults were mainly dominated by Ruminococcaceae (73.90%), while the calves were dominated by both Ruminococcaceae (56.25%) and Lachnospiraceae (24.00%). Stable isotope analysis on the feces and eight referential plant samples in the study area showed that both adults and calves had similar ranges of 13C and 15N, possibly derived from the dominant diet plants of Empetrum nigrum and Salix glauca. Despite the similar diets, the different gut microbiome compositions in muskox adults and calves indicate that the gut microbiome of the calves may not be fully colonized yet as much as the one of the adults.


2022 ◽  
Vol 3 (1) ◽  
pp. 21-44
Author(s):  
Sonja Murto ◽  
Rodrigo Caballero ◽  
Gunilla Svensson ◽  
Lukas Papritz

Abstract. Atmospheric blocking can influence Arctic weather by diverting the mean westerly flow and steering cyclones polewards, bringing warm, moist air to high latitudes. Recent studies have shown that diabatic heating processes in the ascending warm conveyor belt branch of extratropical cyclones are relevant to blocking dynamics. This leads to the question of the extent to which diabatic heating associated with mid-latitude cyclones may influence high-latitude blocking and drive Arctic warm events. In this study we investigate the dynamics behind 50 extreme warm events of wintertime high-Arctic temperature anomalies during 1979–2016. Classifying the warm events based on blocking occurrence within three selected sectors, we find that 30 of these events are associated with a block over the Urals, featuring negative upper-level potential vorticity (PV) anomalies over central Siberia north of the Ural Mountains. Lagrangian back-trajectory calculations show that almost 60 % of the air parcels making up these negative PV anomalies experience lifting and diabatic heating (median 11 K) in the 6 d prior to the block. Further, almost 70 % of the heated trajectories undergo maximum heating in a compact region of the mid-latitude North Atlantic, temporally taking place between 6 and 1 d before arriving in the blocking region. We also find anomalously high cyclone activity (on average five cyclones within this 5 d heating window) within a sector northwest of the main heating domain. In addition, 10 of the 50 warm events are associated with blocking over Scandinavia. Around 60 % of the 6 d back trajectories started from these blocks experience diabatic heating, of which 60 % undergo maximum heating over the North Atlantic but generally closer to the time of arrival in the block and further upstream relative to heated trajectories associated with Ural blocking. This study suggests that, in addition to the ability of blocks to guide cyclones northwards, Atlantic cyclones play a significant role in the dynamics of high-latitude blocking by providing low-PV air via moist-diabatic processes. This emphasizes the importance of the mutual interactions between mid-latitude cyclones and Eurasian blocking for wintertime Arctic warm extremes.


2022 ◽  
Vol 16 (1) ◽  
pp. 35-42
Author(s):  
Christian Sommer ◽  
Thorsten Seehaus ◽  
Andrey Glazovsky ◽  
Matthias H. Braun

Abstract. Glaciers in the Russian High Arctic have been subject to extensive atmospheric warming due to global climate change, yet their contribution to sea level rise has been relatively small over the past decades. Here we show surface elevation change measurements and geodetic mass balances of 93 % of all glacierized areas of Novaya Zemlya, Severnaya Zemlya, and Franz Josef Land using interferometric synthetic aperture radar measurements taken between 2010 and 2017. We calculate an overall mass loss rate of -22±6 Gt a−1, corresponding to a sea level rise contribution of 0.06±0.02 mm a−1. Compared to measurements prior to 2010, mass loss of glaciers on the Russian archipelagos has doubled in recent years.


2022 ◽  
Vol 16 (1) ◽  
pp. 1-15
Author(s):  
Philipp Bernhard ◽  
Simon Zwieback ◽  
Nora Bergner ◽  
Irena Hajnsek

Abstract. Arctic ice-rich permafrost is becoming increasingly vulnerable to terrain-altering thermokarst, and among the most rapid and dramatic of these changes are retrogressive thaw slumps (RTSs). They initiate when ice-rich soils are exposed and thaw, leading to the formation of a steep headwall which retreats during the summer months. The impacts and the distribution and scaling laws governing RTS changes within and between regions are unknown. Using TanDEM-X-derived digital elevation models, we estimated RTS volume and area changes over a 5-year time period from winter 2011/12 to winter 2016/17 and used for the first time probability density functions to describe their distributions. We found that over this time period all 1853 RTSs mobilized a combined volume of 17×106 m3 yr−1, corresponding to a volumetric change density of 77 m3 yr−1 km−2. Our remote sensing data reveal inter-regional differences in mobilized volumes, scaling laws, and terrain controls. The distributions of RTS area and volumetric change rates follow an inverse gamma function with a distinct peak and an exponential decrease for the largest RTSs. We found that the distributions in the high Arctic are shifted towards larger values than at other study sites We observed that the area-to-volume scaling was well described by a power law with an exponent of 1.15 across all study sites; however the individual sites had scaling exponents ranging from 1.05 to 1.37, indicating that regional characteristics need to be taken into account when estimating RTS volumetric changes from area changes. Among the terrain controls on RTS distributions that we examined, which included slope, adjacency to waterbodies, and aspect, the latter showed the greatest but regionally variable association with RTS occurrence. Accounting for the observed regional differences in volumetric change distributions, scaling relations, and terrain controls may enhance the modelling and monitoring of Arctic carbon, nutrient, and sediment cycles.


Author(s):  
Jingwei Yun ◽  
Erin Evoy ◽  
Soleil Worthy ◽  
Melody Fraser ◽  
Daniel Veber ◽  
...  

Ice nucleating particles (INPs) are a small subset of atmospheric particles that can initiate the formation of ice in mixed-phase clouds. Here we report concentrations of INPs during October and...


Sign in / Sign up

Export Citation Format

Share Document