scholarly journals Hopfological Algebra for Infinite Dimensional Hopf Algebras

Author(s):  
Marco A. Farinati
2014 ◽  
Vol 11 (2) ◽  
pp. 1111-1137 ◽  
Author(s):  
Ken Brown ◽  
Kenneth Goodearl ◽  
Thomas Lenagan ◽  
James Zhang

2014 ◽  
Vol 66 (1) ◽  
pp. 205-240 ◽  
Author(s):  
Miodrag Cristian Iovanov

Abstract“Co-Frobenius” coalgebras were introduced as dualizations of Frobenius algebras. We previously showed that they admit left-right symmetric characterizations analogous to those of Frobenius algebras. We consider the more general quasi-co-Frobenius (QcF) coalgebras. The first main result in this paper is that these also admit symmetric characterizations: a coalgebra is QcF if it is weakly isomorphic to its (left, or right) rational dual Rat(C*) in the sense that certain coproduct or product powers of these objects are isomorphic. Fundamental results of Hopf algebras, such as the equivalent characterizations of Hopf algebras with nonzero integrals as left (or right) co-Frobenius, QcF, semiperfect or with nonzero rational dual, as well as the uniqueness of integrals and a short proof of the bijectivity of the antipode for such Hopf algebras all follow as a consequence of these results. This gives a purely representation theoretic approach to many of the basic fundamental results in the theory of Hopf algebras. Furthermore, we introduce a general concept of Frobenius algebra, which makes sense for infinite dimensional and for topological algebras, and specializes to the classical notion in the finite case. This will be a topological algebra A that is isomorphic to its complete topological dual Aν. We show that A is a (quasi)Frobenius algebra if and only if A is the dual C* of a (quasi)co-Frobenius coalgebra C. We give many examples of co-Frobenius coalgebras and Hopf algebras connected to category theory, homological algebra and the newer q-homological algebra, topology or graph theory, showing the importance of the concept.


2012 ◽  
Vol 23 (06) ◽  
pp. 1250066
Author(s):  
SHOUCHUAN ZHANG ◽  
YAO-ZHONG ZHANG

We prove that Nichols algebras of irreducible Yetter–Drinfeld modules over classical Weyl groups A ⋊ 𝕊nsupported by 𝕊nare infinite dimensional, except in three cases. We give necessary and sufficient conditions for Nichols algebras of Yetter–Drinfeld modules over classical Weyl groups A ⋊ 𝕊nsupported by A to be finite dimensional.


2012 ◽  
Vol 55 (1) ◽  
pp. 201-215 ◽  
Author(s):  
A. L. AGORE

AbstractLet A ⊆ E be an extension of Hopf algebras such that there exists a normal left A-module coalgebra map π : E → A that splits the inclusion. We shall describe the set of all coquasitriangular structures on the Hopf algebra E in terms of the datum (A, E, π) as follows: first, any such extension E is isomorphic to a unified product A ⋉ H, for some unitary subcoalgebra H of E (A. L. Agore and G. Militaru, Unified products and split extensions of Hopf algebras, to appear in AMS Contemp. Math.). Then, as a main theorem, we establish a bijective correspondence between the set of all coquasitriangular structures on an arbitrary unified product A ⋉ H and a certain set of datum (p, τ, u, v) related to the components of the unified product. As the main application, we derive necessary and sufficient conditions for Majid's infinite-dimensional quantum double Dλ(A, H) = A ⋈τH to be a coquasitriangular Hopf algebra. Several examples are worked out in detail.


1989 ◽  
Vol 17 (2) ◽  
pp. 413-424 ◽  
Author(s):  
Warren D. Nichols ◽  
M. Bettina Zoeller

2009 ◽  
Vol 08 (05) ◽  
pp. 633-672 ◽  
Author(s):  
FERNANDO FANTINO

Let G be a Mathieu simple group, s ∈ G, [Formula: see text] the conjugacy class of s and ρ an irreducible representation of the centralizer of s. We prove that either the Nichols algebra [Formula: see text] is infinite-dimensional or the braiding of the Yetter–Drinfeld module [Formula: see text] is negative. We also show that if G = M22 or M24, then the group algebra of G is the only (up to isomorphisms) finite-dimensional complex pointed Hopf algebra with group-likes isomorphic to G.


2016 ◽  
Vol 66 (5) ◽  
pp. 2101-2155 ◽  
Author(s):  
Geir Bogfjellmo ◽  
Rafael Dahmen ◽  
Alexander Schmeding

Sign in / Sign up

Export Citation Format

Share Document