hopf algebra
Recently Published Documents


TOTAL DOCUMENTS

796
(FIVE YEARS 98)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 29 (01) ◽  
pp. 53-66
Author(s):  
Jeffrey Bergen ◽  
Piotr Grzeszczuk

Let [Formula: see text] be an automorphism and[Formula: see text] be a [Formula: see text]-skew [Formula: see text]-derivation of an [Formula: see text]-algebra [Formula: see text]. We prove that if [Formula: see text] is semiprimitive and [Formula: see text] is algebraic, then the subalgebra [Formula: see text] has nilpotent Jacobson radical. Using this result, we obtain similar relations for the Baer prime radical, the Levitzki locally nilpotent radical, and the Köthe nil radical when the field [Formula: see text] is uncountable. Then we apply it to actions of the [Formula: see text]-dimensional Taft Hopf algebra [Formula: see text] and the [Formula: see text]-analogue [Formula: see text] of the enveloping algebra of the Lie algebra [Formula: see text].


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 95
Author(s):  
Zhongwei Wang ◽  
Zhen Guan ◽  
Yi Zhang ◽  
Liangyun Zhang

In this paper, we first introduce the concept of a Rota–Baxter operator on a cocommutative weak Hopf algebra H and give some examples. We then construct Rota–Baxter operators from the normalized integral, antipode, and target map of H. Moreover, we construct a new multiplication “∗” and an antipode SB from a Rota–Baxter operator B on H such that HB=(H,∗,η,Δ,ε,SB) becomes a new weak Hopf algebra. Finally, all Rota–Baxter operators on a weak Hopf algebra of a matrix algebra are given.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Hans Nguyen ◽  
Alexander Schenkel ◽  
Richard J. Szabo

AbstractWe apply the modern Batalin–Vilkovisky quantization techniques of Costello and Gwilliam to noncommutative field theories in the finite-dimensional case of fuzzy spaces. We further develop a generalization of this framework to theories that are equivariant under a triangular Hopf algebra symmetry, which in particular leads to quantizations of finite-dimensional analogues of the field theories proposed recently through the notion of ‘braided $$L_\infty $$ L ∞ -algebras’. The techniques are illustrated by computing perturbative correlation functions for scalar and Chern–Simons theories on the fuzzy 2-sphere, as well as for braided scalar field theories on the fuzzy 2-torus.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Muhammad Naseer Khan ◽  
Ahmed Munir ◽  
Muhammad Arshad ◽  
Ahmed Alsanad ◽  
Suheer Al-Hadhrami

This study induced a weak Hopf algebra from the path coalgebra of a weak Hopf quiver. Moreover, it gave a quiver representation of the said algebra which gives rise to the various structures of the so-called weak Hopf algebra through the quiver. Furthermore, it also showed the canonical representation for each weak Hopf quiver. It was further observed that a Cayley digraph of a Clifford monoid can be embedded in its corresponding weak Hopf quiver of a Clifford monoid. This lead to the development of the foundation structures of weak Hopf algebra. Such quiver representation is useful for the classification of its path coalgebra. Additionally, some structures of module theory of algebra were also given. Such algebras can also be applied for obtaining the solutions of “quantum Yang–Baxter equation” that has many applications in the dynamical systems for finding interesting results.


Author(s):  
Johannes Thürigen ◽  
◽  
◽  
◽  
◽  
...  

Various combinatorially non-local field theories are known to be renormalizable. Still, explicit calculations of amplitudes are very rare and restricted to matrix field theory. In this contribution I want to demonstrate how the BPHZ momentum scheme in terms of the Connes-Kreimer Hopf algebra applies to any combinatorially non-local field theory which is renormalizable. This algebraic method improves the understanding of known results in noncommutative field theory in its matrix formulation. Furthermore, I use it to provide new explicit perturbative calculations of amplitudes in tensorial field theories of rank r>2.


Author(s):  
Lucio Centrone ◽  
Chia Zargeh

AbstractLet L be an n-dimensional null-filiform Leibniz algebra over a field K. We consider a finite dimensional cocommutative Hopf algebra or a Taft algebra H and we describe the H-actions on L. Moreover we provide the set of H-identities and the description of the Sn-module structure of the relatively free algebra of L.


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
B. Ananthanarayan ◽  
Abhijit B. Das ◽  
Daniel Wyler

Author(s):  
O. Yu. Aristov

Abstract We consider Akbarov's holomorphic version of the non-commutative Pontryagin duality for a complex Lie group. We prove, under the assumption that $G$ is a Stein group with finitely many components, that (1) the topological Hopf algebra of holomorphic functions on $G$ is holomorphically reflexive if and only if $G$ is linear; (2) the dual cocommutative topological Hopf algebra of exponential analytic functional on $G$ is holomorphically reflexive. We give a counterexample, which shows that the first criterion cannot be extended to the case of infinitely many components. Nevertheless, we conjecture that, in general, the question can be solved in terms of the Banach-algebra linearity of $G$ .


Author(s):  
Diego Arcis ◽  
Sebastián Márquez

We endow the space of rooted planar trees with the structure of a Hopf algebra. We prove that variations of such a structure lead to Hopf algebras on the spaces of labeled trees, [Formula: see text]-trees, increasing planar trees and sorted trees. These structures are used to construct Hopf algebras on different types of permutations. In particular, we obtain new characterizations of the Hopf algebras of Malvenuto–Reutenauer and Loday–Ronco via planar rooted trees.


Sign in / Sign up

Export Citation Format

Share Document