scholarly journals Central configurations in planar n-body problem with equal masses for $$n=5,6,7$$

Author(s):  
Małgorzata Moczurad ◽  
Piotr Zgliczyński

Abstract We give a computer-assisted proof of the full listing of central configuration for n-body problem for Newtonian potential on the plane for $$n=5,6,7$$ n = 5 , 6 , 7 with equal masses. We show all these central configurations have a reflective symmetry with respect to some line. For $$n=8,9,10$$ n = 8 , 9 , 10 , we establish the existence of central configurations without any reflectional symmetry.

2020 ◽  
Vol 132 (11-12) ◽  
Author(s):  
Małgorzata Moczurad ◽  
Piotr Zgliczyński

AbstractWe present a computer assisted proof of the full listing of central configurations for spatial n-body problem for $$n=5$$ n = 5 and 6, with equal masses. For each central configuration, we give a full list of its Euclidean symmetries. For all masses sufficiently close to the equal masses case, we give an exact count of configurations in the planar case for $$n=4,5,6,7$$ n = 4 , 5 , 6 , 7 and in the spatial case for $$n=4,5,6$$ n = 4 , 5 , 6 .


1996 ◽  
Vol 16 (5) ◽  
pp. 1059-1070 ◽  
Author(s):  
Christopher K. McCord

AbstractFor all masses, there are at least n − 2, O2-orbits of non-collinear planar central configurations. In particular, this estimate is valid even if the potential function is not a Morse function. If the potential function is a Morse function, then an improved lower bound, of the order of n! ln(n + 1/3)/2, can be given.


Sign in / Sign up

Export Citation Format

Share Document