computer assisted proof
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Antoine Zurek ◽  
Claire Chainais-Hillairet ◽  
Maxime Breden

The Diffusion Poisson Coupled Model describes the evolution of a dense oxide layer appearing at the surface of carbon steel canisters in contact with a claystone formation. This model is a one dimensional free boundary problem involving drift-diffusion equations on the density of species (electrons, ferric cations and oxygen vacancies), coupled with a Poisson equation on the electrostatic potential and with moving boundary equations, which describe the evolution of the position of each unknown interfaces of the spatial domain. Numerical simulations suggest the existence of traveling wave solutions for this model. These solutions are defined by stationary profiles on a fixed size domain with interfaces moving both at the same velocity. In this paper, we present and apply a computer-assisted method in order to prove the existence of these traveling wave solutions. We also establish a precise and certified description of the solutions. p, li { white-space: pre-wrap;


2020 ◽  
Vol 132 (11-12) ◽  
Author(s):  
Małgorzata Moczurad ◽  
Piotr Zgliczyński

AbstractWe present a computer assisted proof of the full listing of central configurations for spatial n-body problem for $$n=5$$ n = 5 and 6, with equal masses. For each central configuration, we give a full list of its Euclidean symmetries. For all masses sufficiently close to the equal masses case, we give an exact count of configurations in the planar case for $$n=4,5,6,7$$ n = 4 , 5 , 6 , 7 and in the spatial case for $$n=4,5,6$$ n = 4 , 5 , 6 .


2020 ◽  
Author(s):  
Robert Šámal ◽  
Amanda Montejano ◽  
Sebastián González Hermosillo de la Maza ◽  
Matt DeVos ◽  
Ron Aharoni

Mantel's Theorem from 1907 is one of the oldest results in graph theory: every simple $n$-vertex graph with more than $\frac{1}{4}n^2$ edges contains a triangle. The theorem has been generalized in many different ways, including other subgraphs, minimum degree conditions, etc. This article deals with a generalization to edge-colored multigraphs, which can be viewed as a union of simple graphs, each corresponding to an edge-color class. The case of two colors is the same as the original setting: Diwan and Mubayi proved that any two graphs $G_1$ and $G_2$ on the same set of $n$ vertices, each containing more than $\frac{1}{4}n^2$ edges, give rise to a triangle with one edge from $G_1$ and two edges from $G_2$. The situation is however different for three colors. Fix $\tau=\frac{4-\sqrt{7}}{9}$ and split the $n$ vertices into three sets $A$, $B$ and $C$, such that $|B|=|C|=\lfloor\tau n\rfloor$ and $|A|=n-|B|-|C|$. The graph $G_1$ contains all edges inside $A$ and inside $B$, the graph $G_2$ contains all edges inside $A$ and inside $C$, and the graph $G_3$ contains all edges between $A$ and $B\cup C$ and inside $B\cup C$. It is easy to check that there is no triangle with one edge from $G_1$, one from $G_2$ and one from $G_3$; each of the graphs has about $\frac{1+\tau^2}{4}n^2=\frac{26-2\sqrt{7}}{81}n^2\approx 0.25566n^2$ edges. The main result of the article is that this construction is optimal: any three graphs $G_1$, $G_2$ and $G_3$ on the same set of $n$ vertices, each containing more than $\frac{1+\tau^2}{4}n^2$ edges, give rise to a triangle with one edge from each of the graphs $G_1$, $G_2$ and $G_3$. A computer-assisted proof of the same bound has been found by Culver, Lidický, Pfender and Volec.


Sign in / Sign up

Export Citation Format

Share Document