Linking low- to high-energy dynamics of invariant manifolds, transit orbits, and singular collision orbits in the planar circular restricted three-body problem

Author(s):  
Kenta Oshima
2007 ◽  
Vol 17 (04) ◽  
pp. 1151-1169 ◽  
Author(s):  
MARIAN GIDEA ◽  
JOSEP J. MASDEMONT

The stable and unstable invariant manifolds associated with Lyapunov orbits about the libration point L1between the primaries in the planar circular restricted three-body problem with equal masses are considered. The behavior of the intersections of these invariant manifolds for values of the energy between that of L1and the other collinear libration points L2, L3is studied using symbolic dynamics. Homoclinic orbits are classified according to the number of turns about the primaries.


Nonlinearity ◽  
2004 ◽  
Vol 17 (5) ◽  
pp. 1571-1606 ◽  
Author(s):  
G Gómez ◽  
W S Koon ◽  
M W Lo ◽  
J E Marsden ◽  
J Masdemont ◽  
...  

1988 ◽  
Vol 8 (8) ◽  
pp. 63-72 ◽  

AbstractThe existence of transversal ejection—collision orbits in the restricted three-body problem is shown to imply, via the KAM theorem, the existence, for certain intervals of (large) values of the Jacobi constant, of an uncountable number of invariant punctured tori in the corresponding (non-compact) energy surface. The proof is based on a comparison between Levi-Civita and McGehee regularizing variables. That these transversal ejection-collision orbits do actually exist was proved in [5] in the case where one of the primaries has a small mass and the zero-mass body revolves around the other (and for all values of the Jacobi constant compatible with the existence of three connected components for the Hill region); it is proved here without any restriction on the masses, well in the spirit of Conley's thesis [3].


Sign in / Sign up

Export Citation Format

Share Document