High Energy
Recently Published Documents


TOTAL DOCUMENTS

57193
(FIVE YEARS 14839)

H-INDEX

271
(FIVE YEARS 97)

2022 ◽  
Vol 309 ◽  
pp. 118498
Author(s):  
Seungyun Han ◽  
Roland Kobla Tagayi ◽  
Jaewon Kim ◽  
Jonghoon Kim

Author(s):  
Mohd Firdaus Mohd Ab Halim ◽  
Erwan Sulaiman ◽  
Mahyuzie Jenal ◽  
Raja Nor Firdaus Kashfi Raja Othman ◽  
Syed Muhammad Naufal Syed Othman

The inclusion of a high energy density permanent magnet into magnetic gear improves the machine's torque density. However, it also contributes to eddy current loss, especially in a high-speed application such in electric vehicle. In this paper, the losses from eddy current and iron loss are investigated on concentric magnetic gear (CMG). Torque multiplier CMG is designed with 8/3 gear ratio for this study. Iron loss and eddy current loss are compared and discussed. Based on this study, eddy current loss contributes to almost 96% of the total loss. This finding is hoped to direct the researcher to focus more on reducing loss associated with eddy current loss.


2022 ◽  
Vol 211 ◽  
pp. 114514
Author(s):  
Xinzhong Zhang ◽  
Peng Zheng ◽  
Lili Li ◽  
Fei Wen ◽  
Wangfeng Bai ◽  
...  

Author(s):  
Kevin Goodman ◽  
Sam McHenry ◽  
Jeff Titus ◽  
Robert Cooper ◽  
Hemant Ghadi ◽  
...  

Author(s):  
Maria Pia Valdivia Leiva ◽  
Gilbert W Collins IV ◽  
Fabio Conti ◽  
Farhat Beg

Abstract Talbot-Lau X-ray Deflectometry (TXD) enables refraction-based imaging for high-energy-density physics (HEDP) experiments, and thus, it has been studied and developed with the goal of diagnosing plasmas relevant to Inertial Confinement and Magnetic Liner Inertial Fusion. X-pinches, known for reliably generating fast (~1 ns), small (~1 µm) x-ray sources, were driven on the compact current driver GenASIS (~200 kA, 150 ns) as a potential backlighter source for TXD. Considering that different X-pinch configurations have characteristic advantages and drawbacks as x-ray generating loads, three distinct copper X-pinch configurations were studied: the wire X-pinch, the hybrid X-pinch, and the laser-cut X-pinch. The Cu K-shell emission from each configuration was characterized and analyzed regarding the specific backlighter requirements for an 8 keV TXD system: spatial and temporal resolution, number of sources, time of emission, spectrum, and reproducibility. Recommendations for future experimental improvements and applications are presented. The electron density of static objects was retrieved from Moiré images obtained through TXD. This allowed to calculate the mass density of static samples within 4% of the expected value for laser-cut X-pinches, which were found to be the optimal X-pinch configuration for TXD due to their high reproducibility, small source size (≤5 µm), short duration (~1 ns FWHM), and up to 10^6 W peak power near 8 keV photon energy. Plasma loads were imaged through TXD for the first-time using laser-cut X-pinch backlighting. Experimental images were compared with simulations from the X-ray Wave-Front Propagation code, demonstrating that TXD can be a powerful x-ray refraction-based diagnostic for dense Z-pinch loads. Future plans for Talbot-Lau Interferometry diagnostics in the pulsed-power environment are described.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Qilin Xie ◽  
Huafeng Xiao

AbstractIn the present paper, we consider the following discrete Schrödinger equations $$ - \biggl(a+b\sum_{k\in \mathbf{Z}} \vert \Delta u_{k-1} \vert ^{2} \biggr) \Delta ^{2} u_{k-1}+ V_{k}u_{k}=f_{k}(u_{k}) \quad k\in \mathbf{Z}, $$ − ( a + b ∑ k ∈ Z | Δ u k − 1 | 2 ) Δ 2 u k − 1 + V k u k = f k ( u k ) k ∈ Z , where a, b are two positive constants and $V=\{V_{k}\}$ V = { V k } is a positive potential. $\Delta u_{k-1}=u_{k}-u_{k-1}$ Δ u k − 1 = u k − u k − 1 and $\Delta ^{2}=\Delta (\Delta )$ Δ 2 = Δ ( Δ ) is the one-dimensional discrete Laplacian operator. Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass Theorem when the nonlinearities $\{f_{k}\}$ { f k } satisfy 4-superlinear growth conditions. Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.


Author(s):  
Han Mingyue ◽  
Yang Luo ◽  
Liuhe Li ◽  
Hua Li ◽  
Ye Xu ◽  
...  

Abstract Investigating the ion dynamics in the emerging bipolar pulse high power impulse magnetron sputtering (BP-HiPIMS) discharge is necessary and important for broadening its industrial applications. Recently, an optimized plasma source operating the BP-HiPIMS with an auxiliary anode and a solenoidal coil is proposed to enhance the plasma flux and energy, named as ACBP-HiPIMS (‘A’-anode, ‘C’-coil). In the present work, the temporal evolutions of the ion velocity distribution functions (IVDF) in BP-HiPIMS and ACBP-HiPIMS discharges are measured using a retarding field energy analyser (RFEA). For the BP-HiPIMS discharge, operated at various positive pulse voltages U+, the temporal evolutions of IVDFs illustrate that there are two high-energy peaks, E1 and E2, which are both lower than the applied U+. The ratio of the mean ion energy Ei,mean to the applied U+ is around 0.55-0.6 at various U+. In ACBP-HiPIMS discharge, the IVDF evolution shows three distinguishable stages which has the similar evolution trend with the floating potential Vf on the RFEA frontplate: (i) the stable stage with two high-energy peaks (E2 and E3 with energy respectively lower and higher than the applied U+ amplitude) when the floating potential Vf is close to the applied positive pulse voltage; (ii) the transition stage with low-energy populations when the Vf drops by ~20 V within ~10 μs; and (iii) the oscillation stage with alternating E2 and E3 populations and ever-present E1 population when the Vf slighly descreases unitl to the end of positive pulse. The comparison of IVDFs in BP-HiPIMS and ACBP-HiPIMS suggests that both the mean ion energy and high-energy ion flux have been effectively improved in ACBP-HiPIMS discharge. The formation of floating potential drop is explored using the Langmuir probe which may be attributed to the establishment of anode double layer structure.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Aisling A. Geraghty ◽  
Laura McBean ◽  
Sarah Browne ◽  
Patricia Dominguez Castro ◽  
Ciara M. E. Reynolds ◽  
...  

When treating malnutrition, oral nutritional supplements (ONSs) are advised when optimising the diet is insufficient; however, ONS usage and user characteristics have not been previously analysed. A retrospective secondary analysis was performed on dispensed pharmacy claim data for 14,282 anonymised adult patients in primary care in Ireland in 2018. Patient sex, age, residential status, ONS volume (units) and ONS cost (EUR) were analysed. The categories of ‘Moderate’ (<75th centile), ‘High’ (75th–89th centile) and ‘Very High’ ONS users (≥90th centile) were created. The analyses among groups utilised t-tests, Mann–Whitney U tests and chi-squared tests. This cohort was 58.2% female, median age was 76 years, with 18.7% in residential care. The most frequently dispensed ONS type was very-high-energy sip feeds (45% of cohort). Younger males were dispensed more ONSs than females (<65 years: median units, 136 vs. 90; p < 0.01). Patients living independently were dispensed half the volume of those in residential care (112 vs. 240 units; p < 0.01). ‘Moderate’ ONS users were dispensed a yearly median of 84 ONS units (median cost, EUR 153), ‘High’ users were dispensed 420 units (EUR 806) and ‘Very High’ users 892 yearly units (EUR 2402; p < 0.01). Further analyses should focus on elucidating the reasons for high ONS usage in residential care patients and younger males.


Sign in / Sign up

Export Citation Format

Share Document