three body
Recently Published Documents


TOTAL DOCUMENTS

7767
(FIVE YEARS 905)

H-INDEX

114
(FIVE YEARS 11)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Debasish Borah ◽  
Arnab Dasgupta ◽  
Devabrat Mahanta
Keyword(s):  

2022 ◽  
pp. 017084062210741
Author(s):  
Isabelle Bouty ◽  
Cécile Godé

While prior investigations of organizational coordination have mainly focused on cognitive processes, this article brings the physical and symbolic body more centrally into the phenomenon. Mobilizing the ‘strong’ practice programme, we explore how organizational coordination practice and bodies co-produce each other. Our study is an empirical qualitative analysis of Patrouille de France, a military air display squadron. By successively zooming in and out from pilots’ doings and sayings, we reveal three body-related threads (training, sensitizing, and distinguishing) by which organizational coordination and bodies co-produce each other. We especially point to technical and physical capital, proprioception, kinaesthesia, embodied awareness of co-presence, and the symbolic (re)presentation of bodies as embodied aspects of the actors’ habitus structured by and for coordination. Our findings have implications for our understanding of organizational coordination by showing that there is more to bodies in coordination than just embodied cognition or communication. They also further coordination literature by emphasizing that coordination practice includes organizationally structured bodywork aimed at enhancing bodies; bodywork that is not limited to learning the practice but crucial to maintaining actors in that practice.


2022 ◽  
Author(s):  
Anthony Rey-Pommier ◽  
Frédéric Chevallier ◽  
Philippe Ciais ◽  
Grégoire Broquet ◽  
Theodoros Christoudias ◽  
...  

Abstract. Urban areas and industrial facilities, which concentrate most human activity and industrial production, are major sources of air pollutants, with serious implications for human health and global climate. For most of these pollutants, emission inventories are often highly uncertain, especially in developing countries. Spaceborne observations from the TROPOMI instrument, onboard the Sentinel-5 Precursor satellite, are used to measure nitrogen dioxide (NO2) slant column densities with a high spatial resolution. Here, we use two years of TROPOMI retrievals to map nitrogen oxides (NOx = NO + NO2) emissions in Egypt with a top-down model based on the continuity equation in steady state. Emissions are expressed as the sum of a transport term and a sink term representing the three-body reaction comprising NO2 and OH. This sink term requires information on the lifetime of NO2, which is calculated with the use of CAMS near-real-time temperature and hydroxyl radical (OH) concentration fields. The applicability of the OH concentration field is evaluated by comparing the lifetime it provides with the lifetime inferred from the fitting of NO2 line density profiles with an exponentially modified Gaussian function. This comparison, which is conducted for 39 samples of NO2 patterns above the city of Riyadh, provides information on the reliability of the CAMS near-real-time OH concentration fields; It also provides the location of the most appropriate vertical level to represent typical pollution sources in industrial areas and megacities in the Middle East. In Egypt, total derived emissions of NOx are dominated by the sink term. However, they can be locally dominated by wind transport, especially along the Nile where human activities are concentrated. Megacities and industrial regions clearly appear as the largest sources of NOx emissions in the country. Our top-down model produces emissions whose annual variability is consistent with the national electricity consumption. It is also able to detect lower emissions on Fridays, which are inherent to the social norm of the country, and to quantify the drop in emissions due to the COVID-19 pandemic. Overall, our indications of NOx emissions for Egypt are found to be 25.0 % higher than the CAMS-GLOB-ANT_v4.2 inventory, but significantly differ in terms of seasonality.


2022 ◽  
Vol 9 ◽  
Author(s):  
Anna Kaczmarek-Kȩdziera ◽  
Borys Ośmiałowski ◽  
Piotr S. Żuchowski ◽  
Dariusz Kȩdziera

In the present study, the influence of the hydrogen bonding for the one- and two-photon absorption of the prototypical squaraine dye is investigated with quantum chemistry tools. The central squaraine unit is bound by strong hydrogen bonds with 4-substituted N,N′-diphenylurea and, alternatively, N,N′-diphenylthiourea molecules, which affects to a high extend the properties of the squaraine electron accepting moiety, thus shifting its maximum absorption wavelength and enhancing the TPA cross section. The replacement of oxygen by sulfur atoms in the squaraine central ring, known to affect its photophysical behavior, is considered here as the way of modifying the strength and nature of the intermolecular contacts. Additionally, the influence of the oxygen-by-sulfur replacement is also considered in the N,N′-diphenylurea moiety, as the factor affecting the acidity of the N–H protons. The introduction of the sequence of the substituents of varying electron-donating or electron-withdrawing characters in the position 4 of N,N′-diphenyl(thio)urea subsystems allows to finely tune the hydrogen bonding with the central squaraine unit by further modification of the N–H bond characteristics. All of these structural modifications lead to the controlled adjustment of the electron density distribution, and thus, the properties affected such as transition moments and absorption intensity. Ab initio calculations provide strong support for this way of tailoring of one- or two-photon absorption due to the obtained strong hypsochromic shift of the maximum one-photon absorption wavelength observed particularly for thiosquaraine complexes and an increase in the TPA wavelength together with the increase in the TPA cross section. Moreover, the source of the strong modification of the thiosquaraine OPA in contrast to the pristine oxosquaraine upon N,N′-diphenyl(thio)urea substitution is determined. Furthermore, for the first time, the linear dependence of the non-additivity in the interaction energy on the Hammett substituent constant is reported. The stronger the electron-donating character of the substituent, the larger the three-body non-additive components and the larger their percentage to the total interaction energy.


2022 ◽  
Vol 275 ◽  
pp. 125232
Author(s):  
Riki Hendra Purba ◽  
Kazumichi Shimizu ◽  
Kenta Kusumoto ◽  
Yila Gaqi ◽  
Takayuki Todaka

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
X. Chen ◽  
T. Gehrmann ◽  
E. W. N. Glover ◽  
A. Huss

Abstract The rare three-body decay of a Higgs boson to a lepton-antilepton pair and a photon is starting to become experimentally accessible at the LHC. We investigate how higher-order QCD corrections to the dominant gluon-fusion production process impact on the fiducial cross sections in this specific Higgs decay mode for electrons and muons. Corrections up to NNLO QCD are found to be sizeable. They are generally uniform in kinematical variables related to the Higgs boson, but display several distinctive features in the kinematics of its individual decay products.


2022 ◽  
Vol 71 (1) ◽  
pp. 014202-014202
Author(s):  
Bai Wen-Jie ◽  
◽  
Yan Dong ◽  
Han Hai-Yan ◽  
Hua Shuo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document