homoclinic orbits
Recently Published Documents


TOTAL DOCUMENTS

693
(FIVE YEARS 58)

H-INDEX

48
(FIVE YEARS 3)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3285
Author(s):  
Yanli Chen ◽  
Lei Wang ◽  
Xiaosong Yang

The existence of homoclinic orbits or heteroclinic cycle plays a crucial role in chaos research. This paper investigates the existence of the homoclinic orbits to a saddle-focus equilibrium point in several classes of three-dimensional piecewise affine systems with two switching planes regardless of the symmetry. An analytic proof is provided using the concrete expression forms of the analytic solution, stable manifold, and unstable manifold. Meanwhile, a sufficient condition for the existence of two homoclinic orbits is also obtained. Furthermore, two concrete piecewise affine asymmetric systems with two homoclinic orbits have been constructed successfully, demonstrating the method’s effectiveness.


Author(s):  
Ahmed Ezzat Matouk

Abstract The nonlinear dynamics of a discretized form of quasi-periodic plasma perturbations model (Q-PPP) with nonlocal fractional differential operator possessing singular kernel are investigated. For example, the conditions for the stability and occurrence of Neimark–Sacker (NS) and flip bifurcations in the proposed discretized equations are provided. Moreover, analysis of nonlinearities such as the existence of chaos in this map is proved numerically via bifurcation diagrams, Lyapunov exponents and analytically via Marotto’s Theorem. Also, some simulation results are utilized to confirm the theoretical results and to show that the obtained map exhibits double routes to chaos: one is via flip bifurcation and the other is via NS bifurcation. Furthermore, more complex dynamical phenomena such as existence of closed invariant curves, homoclinic orbits, homoclinic connections, period 3 and period 4 attractors are shown. This kind of research is useful for physicists who work with tokamak models.


2021 ◽  
pp. 1-44
Author(s):  
PATRICE LE CALVEZ ◽  
MARTÍN SAMBARINO

Abstract We show that $C^r $ generically in the space of $C^r$ conservative diffeomorphisms of a compact surface, every hyperbolic periodic point has a transverse homoclinic orbit.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Liangqiang Zhou ◽  
Wen Wang

Chaos in piezoelectric composite laminated beams has significant implications in the design of this model. Some results for this model have been obtained numerically. With the energy-phase method and numerical simulations, global dynamics of piezoelectric composite laminated beams is investigated in this paper. The average equation of the piezoelectric composite laminated beam is obtained by the normal form theory. The existence of multipulse homoclinic orbits for undisturbed and dissipative cases is analyzed by the energy-phase method, and the mechanism of chaotic motion of the system is given. The effect of the dissipation factor on pulse sequence and layer radius is studied in detail. The chaotic motion of the system is verified by numerical simulations.


Author(s):  
Lin Wang ◽  
James Watmough ◽  
Fang Yu

A system of two ordinary differential equations is proposed to model chemically-mediated interactions between plants and herbivores by incorporating a toxin-modifiednumerical response. This numerical response accounts for the reduction in the her-bivore's growth and reproduction due to chemical defenses from plants. It is shownthat the system exhibits very rich dynamics including saddle-node bifurcations, Hopfbifurcations, homoclinic bifurcations and co-dimension 2 bifurcations. Numerical sim-ulations are presented to illustrate the occurrence of multitype bistability, limit cycles,homoclinic orbits and heteroclinic orbits. We also discuss the ecological implicationsof the resulting dynamics.


Sign in / Sign up

Export Citation Format

Share Document