Investigating the Solvability of the Three-Dimensional Neumann Problem for the Poisson Equation in Piecewise-Homogeneous Conducting Media

2015 ◽  
Vol 27 (1) ◽  
pp. 26-35
Author(s):  
E. V. Zakharov ◽  
S. I. Orlik
1969 ◽  
Vol 37 (4) ◽  
pp. 727-750 ◽  
Author(s):  
Gareth P. Williams

A method of numerically integrating the Navier-Stokes equations for certain three-dimensional incompressible flows is described. The technique is presented through application to the particular problem of describing thermal convection in a rotating annulus. The equations, in cylindrical polar co-ordinate form, are integrated with respect to time by a marching process, together with the solving of a Poisson equation for the pressure. A suitable form of the finite difference equations gives a computationally-stable long-term integration with reasonably faithful representation of the spatial and temporal characteristics of the flow.Trigonometric interpolation techniques provide accurate (discretely exact) solutions to the Poisson equation. By using an auxiliary algorithm for rapid evaluation of trigonometric transforms, the proportion of computation needed to solve the Poisson equation can be reduced to less than 25% of the total time needed to’ advance one time step. Computing on a UNIVAC 1108 machine, the flow can be advanced one time-step in 2 sec for a 14 × 14 × 14 grid upward to 96 sec for a 60 × 34 × 34 grid.As an example of the method, some features of a solution for steady wave flow in annulus convection are presented. The resemblance of this flow to the classical Eady wave is noted.


2005 ◽  
Vol 310 (2) ◽  
pp. 397-411 ◽  
Author(s):  
Gabriel Acosta ◽  
María G. Armentano ◽  
Ricardo G. Durán ◽  
Ariel L. Lombardi

1977 ◽  
Vol 99 (4) ◽  
pp. 656-662 ◽  
Author(s):  
S. Sengupta

A numerical rigid-lid model for wind driven circulation and temperature fields in closed basins has been developed. The horizontal momentum equations each include the non-steady, non-linear inertia, Coriolis, pressure gradient and all three viscous terms. The energy equation includes the non-steady, convective and all three diffusion terms. The hydrostatic and Boussinesq approximations have been used. A Poisson equation derived from the vertically integrated horizontal momentum equations has been used as the predictive equation for surface pressure. An iterative scheme with normalization has been developed to solve the Poisson equation for pressure with Neumann boundary conditions. A vertically normalized system of equations which maps variable depth domains to a constant depth has been used. The model has been applied to a pond located near Cleveland, Ohio. The effect of topography and buoyancy on wind driven circulation has been investigated. The relative importance of the terms in the transport equations has been analyzed.


Sign in / Sign up

Export Citation Format

Share Document