horizontal momentum
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 1)

MAUSAM ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 393-400
Author(s):  
R. VENKATESAN

ABSTRACT. Mesoscale features of a coastal atmospheric boundary layer such as the land-sea circulation and the thermal internal boundary layer (TIBL) structure have been simulated using a two-dimensional numerical boundary layer model. Using Boussinesq approximation for horizontal momentum equations and hydrostatic approximation for vertical momentum equation the model solves the 'shallow water' equations year over a grid domain 80 km length on either side of the coastline and 2 km height. The influence of the land-sea breezes on the dispersion of pollutants released from a continuous point source located at the roast has been studied. The fumigation of pollutants from an offshore source into TIBL over the land has also been illustrated. The limitations associated with the model are also discussed.    


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 956
Author(s):  
Warren E. Heilman ◽  
Kenneth L. Clark ◽  
Xindi Bian ◽  
Joseph J. Charney ◽  
Shiyuan Zhong ◽  
...  

Atmospheric turbulent circulations in the vicinity of wildland fire fronts play an important role in the transfer of momentum into and out of combustion zones, which in turn can potentially affect the behavior and spread of wildland fires. The vertical turbulent transfer of momentum is accomplished via individual sweep, ejection, outward interaction, and inward interaction events, collectively known as sweep-ejection dynamics. This study examined the sweep-ejection dynamics that occurred before, during, and after the passage of a surface fire front during a prescribed fire experiment conducted in an open-canopied forest in the New Jersey Pine Barrens. High-frequency (10 Hz), tower-based, sonic anemometer measurements of horizontal and vertical wind velocity components in the vicinity of the fire front were used to assess the relative frequencies of occurrence of the different types of momentum-flux events, their contributions to the overall momentum fluxes, and their periodicity patterns. The observational results suggest that the presence of surface fire fronts in open-canopied forests can substantially change the sweep-ejection dynamics that typically occur when fires are not present. In particular, sweep events resulting in the downward transport of high horizontal momentum air from above were found to be more prominent during fire-front-passage periods.


2021 ◽  
Author(s):  
Julian Quimbayo-Duarte ◽  
Juerg Schmidli

<p>An accurate representation of the momentum budget in numerical models is essential in the quest for reliable weather forecasting, from large scales (climate models) to small scales (numerical weather prediction models, NWP). It is well known that orographic waves play an important role in large-scale circulation. The vertical propagation of such waves is associated with a vertical flux of horizontal momentum, which may be transferred to the mean flow by wave-mean flow interaction and wave-breaking (Sandu et al., 2019). The orography scales inducing such phenomena are often smaller than the model resolution, even for NWP models, leading to the need for parameterisation schemes for orographic drag. Yet, such parameterization in current models is fairly limited (Vosper et al., 2020). The present work aims to contribute to an improved understanding and parameterization of the impact of small-scale orography on the lower atmosphere with a focus on the stable atmospheric boundary layer.</p><p>As a first step, an idealized set of experiments has been designed to explore the capabilities of the Icosahedral Nonhydrostatic model in its large eddy simulation mode (ICON-LES, Dipankar et al., 2015) to represent turbulence processes in the stably-stratified atmosphere. Initial experiments testing the model performance over flat terrain (GABLS experiment, Beare et al., 2006), orographic wave generation (shallow bell-shaped topography, Xue et al., 2000) and moderate complex terrain (U-shaped valley, Burns and Chemel 2014) have been conducted. The results demonstrate that ICON-LES adequately represents the boundary layer processes for the investigated cases in comparison to the literature.</p><p>In a second step, an idealized set of experiments of atmospheric flow over idealized sinusoidal and multiscale terrain has been designed to study the impact of the orographically-induced gravity waves on the total surface drag and the vertical flux of horizontal momentum. The influence of different atmospheric conditions is assessed by varying the background wind speed and the temperature stratification at the initial time.</p>


Author(s):  
Yongming Wang ◽  
Xuguang Wang

AbstractA convective-scale static background-error covariance (BEC) matrix is further developed to include the capability of direct reflectivity assimilation and evaluated within the GSI-based 3-dimensional variational (3DVar) and hybrid ensemble-variational (EnVar) methods. Specific developments are summarized as follows: 1) Control variables (CVs) are extended to include reflectivity, vertical velocity, and all hydrometeor types. Various horizontal momentum and moisture CV options are included. 2) Cross-correlations between all CVs are established. 3) A storm intensity-dependent binning method is adopted to separately calculate static error matrices for clear-air and storms with varying intensities. The resultant static BEC matrices are simultaneously applied at proper locations guided by the observed reflectivity. 4) The EnVar is extended to adaptively incorporate static BECs based on the quality of ensemble covariances.Evaluation and examination of the new static BECs are first performed on the 8 May 2003 Oklahoma City supercell. Detailed diagnostics and 3DVar examinations suggest zonal/meridian winds and pseudo-relative humidity are selected horizontal momentum and moisture CVs for direct reflectivity assimilation, respectively; inclusion of cross-correlations favors to spinup and maintain the analyzed storms; application of binning improves characteristics and persistence of the simulated storm. Relative to an experiment using the full ensemble BECs (Exp-PureEnVar), incorporating static BECs in hybrid EnVar reduces spinup time and better analyzes reflectivity distributions while the background ensemble is deficient in sampling errors. Compared to both pure 3DVar and Exp-PureEnVar, hybrid EnVar better predicts reflectivity distributions and better maintains strong mesocyclone. Further examination through the 20 May 2013 Oklahoma supercells confirms these results and additionally demonstrates the effectiveness of adaptive hybridization.


Fluids ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 187
Author(s):  
Jon Wilkening

We propose a new two-parameter family of hybrid traveling-standing (TS) water waves in infinite depth that evolve to a spatial translation of their initial condition at a later time. We use the square root of the energy as an amplitude parameter and introduce a traveling parameter that naturally interpolates between pure traveling waves moving in either direction and pure standing waves in one of four natural phase configurations. The problem is formulated as a two-point boundary value problem and a quasi-periodic torus representation is presented that exhibits TS-waves as nonlinear superpositions of counter-propagating traveling waves. We use an overdetermined shooting method to compute nearly 50,000 TS-wave solutions and explore their properties. Examples of waves that periodically form sharp crests with high curvature or dimpled crests with negative curvature are presented. We find that pure traveling waves maximize the magnitude of the horizontal momentum among TS-waves of a given energy. Numerical evidence suggests that the two-parameter family of TS-waves contains many gaps and disconnections where solutions with the given parameters do not exist. Some of these gaps are shown to persist to zero-amplitude in a fourth-order perturbation expansion of the solutions in powers of the amplitude parameter. Analytic formulas for the coefficients of this perturbation expansion are identified using Chebyshev interpolation of solutions computed in quadruple-precision.


2021 ◽  
Author(s):  
Maarten Paul van der Laan ◽  
Mark Kelly ◽  
Mads Baungaard

Abstract. Idealized models of the atmospheric boundary layer (ABL) can be used to leverage understanding of the interaction between the ABL and wind farms, towards improvement of wind farm flow modelling. We propose a pressure-driven one-dimensional ABL model without wind veer, which can be used as an inflow model for three-dimensional wind farm simulations for isolating the effects of wind veer and ABL depth. The model is derived from the horizontal momentum equations, and follows both Rossby- and Reynolds number similarity; use of such similarity reduces computation time and allows rational comparison between different conditions. The proposed ABL model compares well with solutions of the mean momentum equations that include wind veer, if the forcing variable is employed as a free parameter.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 193
Author(s):  
Larry J. Pratt ◽  
E. Jason Albright ◽  
Irina Rypina ◽  
Houshuo Jiang

The Lagrangian and Eulerian structure and dynamics of a strong wind event in the Tokar Gap region are described using a Weather Research and Forecasting (WRF) model hindcast for 2008. Winds in the Tokar Gap reach 25 m s−1 and remain coherent as a jet far out over the Red Sea, whereas equally strong wind jets occurring in neighboring gaps are attenuated abruptly by jump-like hydraulic transitions that occur just offshore of the Sudan coast. The transition is made possible by the supercritical nature of the jets, which are fed by air that spills down from passes at relatively high elevation. By contrast, the spilling flow in the ravine-like Tokar Gap does not become substantially supercritical and therefore does not undergo a jump, and also carries more total horizontal momentum. The Tokar Wind Jet carries some air parcels across the Red Sea and into Saudi Arabia, whereas air parcel trajectories in the neighboring jets ascend as they cross through the jumps, then veer sharply to the southeast and do not cross the Red Sea. The mountain parameter Nh/U is estimated to lie in the range of 1.0–4.0 for the general region, a result roughly consistent with a gap jet having a long extension, and supercritical flows spilling down from higher elevation passes. The strong event is marked by the formation of a feature with a vertical cellular structure in the upstream entrance region of the Tokar Gap, a feature absent from the more moderate events that occur throughout the summer. The cell contains descending air parcels that are fed into the Tokar Gap and one of the neighboring gaps. An analysis of the Bernoulli function along air parcel trajectories reveals an approximate balance between the loss of potential energy and gain of internal energy and pressure, with surprisingly little contribution from kinetic energy, along the path of the descending flow. The winds in all gaps attain the critical wind speed nominally required to loft dust into the atmosphere, though only the Tokar Gap has a broad, silty delta region capable of supplying particulate matter for dust storms.


2020 ◽  
Vol 214 ◽  
pp. 107729
Author(s):  
Xiantao Zhang ◽  
Xinliang Tian ◽  
Xiaoxian Guo ◽  
Xin Li ◽  
Longfei Xiao

Author(s):  
Larry Pratt ◽  
E. Jason Albright ◽  
Irina Rypina ◽  
Houshuo Jiang

The Lagrangian and Eulerian structure and dynamics of a strong wind event in the Tokar Gap region are described using a WRF model hindcast for 2008. Winds in the Tokar Gap reach 25 m s-1 and remain coherent as a jet far out over the Red Sea, whereas equally strong wind jets occurring in neighboring gaps are attenuated abruptly by a jump-like hydraulic transition that occur just offshore of the Sudan coast. The transition is made possible by the supercritical nature of the jets, which are fed by air that spills down from passes at relatively high elevation. By contrast, the spilling flow in the ravine-like Tokar Gap does not become substantially supercritical and therefore does not undergo a jump, and also carries more total horizontal momentum. The Tokar Wind Jet carries some air parcels across the Red Sea and into Saudi Arabia, whereas air parcel trajectories in the neighboring jets ascend as they cross through the jumps, then veer sharply to the southeast and do not cross the Red Sea. The mountain parameter Nh/U is estimated to lie in the rage 1.0-4.0 for the general region, a result roughly consistent with a primary gap jet having a long extension, and supercritical jets spilling down from higher elevation passes. The strong event is marked by the formation of a cyclonic cell near the upstream entrance to the Tokar Gap, a feature absent from the more moderate events that occur throughout the summer. The cell contains descending air parcels that are fed into the primary and secondary jets. An analysis of the Bernoulli function along air parcel trajectories reveals an approximate balance between the loss of potential energy and gain of internal energy and pressure, with surprisingly little contribution from kinetic energy, along the path of the descending flow. All jets attain the critical wind speed nominally required to loft dust into the atmosphere, though only the Tokar Gap has a broad, delta region with plentiful deposits of silt.


2020 ◽  
Vol 14 (04) ◽  
pp. 2050018 ◽  
Author(s):  
Chentong Hu ◽  
Yifan Wu ◽  
Chao An ◽  
Hua Liu

Tsunamis are generated primarily by the vertical displacement of the seafloor if the seafloor is flat. If the seafloor is slanted, the horizontal motion also contributes to the generation of tsunamis. A previous study proposed that such effects can be estimated by simply calculating the elevation of water due to the horizontal displacement of the slope. Two more studies later argued that the horizontal motion also results in horizontal momentum of the water, which amplifies the tsunami generation. In this study, we numerically simulate the tsunami generation process of flat and sloping seafloor. It is found that, for the flat seafloor, the initial water elevation equals the vertical seafloor displacement. For the sloping seafloor, the initial water elevation deviates from the vertical seafloor displacement, and the difference can be accurately evaluated by the horizontal seafloor displacement. Thus, the initial horizontal momentum of the water is negligible for tsunami generation.


Sign in / Sign up

Export Citation Format

Share Document